Descripción del proyecto
Biomarcadores nanomecánicos para mejorar el tratamiento antineoplásico personalizado
Los tumores son estructuras muy heterogéneas que presentan variaciones entre tipos de tumores, pero también entre tumores del mismo tipo y en función de su evolución. Muchos tumores sólidos se endurecen conforme crecen en el tejido del hospedador. El endurecimiento ocurre debido al aumento de los componentes estructurales del tumor, y las fuerzas mecánicas generadas dentro de este comprimen los vasos sanguíneos intratumorales, lo que menoscaba la administración de fármacos. Estudios recientes revelaron que la estrategia de alivio de la tensión con fármacos antifibróticos, favorece el reblandecimiento del tumor y la administración de fármacos, lo que mejora el tratamiento. El proyecto CancerFingerPrints, financiado con fondos europeos, utilizará microscopía de fuerza atómica de última generación para desarrollar biomarcadores nanomecánicos que permitan cuantificar las características mecánicas de los tumores.
Objetivo
In the fight against cancer, it is well recognized that tumors are highly heterogeneous and they might differ considerably not only between tumors types but also among tumors of the same type or even for the same tumor during progression. As a result, the efficacy of standard cancer chemotherapies varies, and while some patients respond to a particular treatment, other patients do not gain any benefit and in many cases, the condition of the patient deteriorates due to adverse effects. Consequently, crucial in cancer therapy is the prediction of a patient’s response to treatment. Failure of standard therapies has led to the introduction of a new era of personalized, patient-specific treatments, which are based on the identification of biomarkers that characterize the state of a particular tumor. Many solid tumors (e.g. breast cancers and sarcomas) stiffen as they grow in a host’s normal tissue. Stiffening is caused by an increase in the structural components of the tumor. As tumor tissue becomes stiffer, mechanical forces are generated within the tumor, that cause the compression of intratumoral blood vessels, resulting in compromised vessel functionality, which leads to poor drug delivery and therapeutic outcomes. Recently, it has been demonstrated that “stress-alleviation” strategy, which uses anti-fibrotic agents to promote tumor softening, improves uniform delivery of drugs and enhances therapy. Here, we propose the use of state-of-the-art Atomic Force Microscopy-AFM techniques for the development of a NanoMechanical biomarker, which will quantify the mechanical FingerPrints of Cancer. This biomarker will aim to: (i)predict the patient’s response to treatment with chemotherapy and (ii)monitor treatment outcomes, in the case of strategies that target tumor mechanical properties (e.g. stress-alleviation therapy). Furthermore, we propose to develop an AFM-based software product to be used as a commercial tool for the measurement of the NanoMechanical biomarker.
Ámbito científico
Programa(s)
Régimen de financiación
ERC-POC - Proof of Concept GrantInstitución de acogida
1678 Nicosia
Chipre