Descrizione del progetto
Liberare il potenziale della salute mobile
I progressi nella tecnologia mobile stanno migliorando la portata dei servizi sanitari. Sempre più pazienti oggi accedono a servizi sanitari a distanza, ovunque e in qualsiasi momento. La crescente sofisticazione delle applicazioni mobili per la salute offre anche nuove gamme di rilevamento e calcolo. Ad esempio, il rilevamento dei suoni attraverso i microfoni degli smartphone può aiutare nella diagnosi. Il progetto EAR, finanziato dall’UE, esaminerà l’uso dei dati audio e le sfide relative alla raccolta di questo tipo di dati sensibili. Il progetto proporrà modelli per collegare i suoni alla diagnosi della malattia e per affrontare le problematiche inerenti sollevate dal rilevamento in natura: problemi di rumore e privacy. Con oltre 100 000 app mHealth attualmente disponibili sul mercato, i risultati si dimostreranno particolarmente tempestivi.
Obiettivo
Mobile health is becoming the holy grail for affordable medical diagnostics. It has the potential of associating human behaviour with medical symptoms automatically and at early disease stage; it also offers cheap deployment, reaching populations generally not able to afford diagnosis and delivering a level of monitoring so fine which will likely improve diagnostic theory itself. The advancements of technology offer new ranges of sensing and computation capability with the potential of further improving the reach of mobile health. Audio sensing through microphones of mobile devices has recently being recognized as a powerful and yet underutilized source of medical information: sounds from the human body (e.g. sighs, breathing sounds and voice) are indicators of disease or disease onsets. The current pilots, while generally medically grounded, are potentially ad-hoc from the perspective of key areas of computer science; specifically, in their approaches to computational models and how the system resource demands are optimized to fit within the limits of the mobile devices, as well as in terms of robustness needed for tracking people in their daily lives. Audio sensing also comes with challenges which threaten its use in clinical context: its power hungry nature and the fact that audio data is very sensitive and the collection of this sort of data for analytics violates obvious ethical rules. This work proposes models to link sounds to disease diagnosis and to deal with the inherent issues raised by in-the-wild sensing: noise and privacy concerns. We exploit these audio models in wearable systems maximizing the use of local hardware resources with power optimization and accuracy in both near real time and sparse audio sampling. Privacy will arise as a by-product taking away the need of cloud analytics. Moreover, the framework will embed the ability to quantify the diagnostic uncertainty and consider patient context as confounding factors via additional sensors.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-ADG - Advanced GrantIstituzione ospitante
CB2 1TN Cambridge
Regno Unito