Description du projet
Une recherche vise à mieux comprendre les interactions disque-planète
La formation des planètes intervient dans les disques d’accrétion qui entourent de jeunes étoiles. Ces disques présentent une grande variété de structures spatiales, que l’on pense être causées par la dynamique gaz-poussière, les processus chimiques et l’interaction entre les planètes et le disque. Le projet Origins, financé par l’UE, entend établir un lien entre la physique et la chimie du disque et les propriétés des exoplanètes. Grâce à des observations détaillées sur les disques et les jeunes systèmes planétaires, des simulations et des expériences en laboratoire sur les particules de poussière/glace, le projet permettra de déterminer les propriétés fondamentales des disques responsables de la formation des planètes. Les résultats du projet permettront de mieux comprendre l’échelle de temps relative à la formation des planètes et d’en savoir plus sur la nature des interactions entre les planètes et les disques.
Objectif
Planet-forming disks around young stars display a large variety of spatial structures indicating pattern formation by gas-dust dynamics and planet-disk interactions. The diversity of planetary properties point to different physical and chemical conditions in their parental disks and a range of formation pathways. Currently, there is no unifying approach which connects disk physics and chemistry with exoplanet properties. The development of such a link remains a considerable challenge as long as fundamental disk properties are uncertain. The objective of this project is to close the gap between the conditions in planet-forming disks and the properties of giant planets and their atmospheres.
We will constrain fundamental disk properties - mass, turbulent state, and molecular content - by dedicated infrared and (sub)millimetre observations combined with comprehensive modeling efforts and experimental studies of ice-grain surface chemistry. The second very demanding project goal is to discover young giant planets in their birth environments and to characterize their properties, applying innovative techniques to analyze the results of approved imaging surveys with AO instruments at the VLT/LBT. These data will be supplemented by ALMA observations tracing gas kinematic signatures induced by embedded planets. The results of these studies will lead to major progress in understanding the timescale for planet formation and will reveal the nature of planet-disk interactions. The most challenging objective of the project is to build a connection between disk properties and the atmospheres of giant planets. Planet formation and evolution models will be coupled with a description of the chemical and accretion history to predict planetary elemental abundances, setting the scene for the thermal and chemical structure of giant planet atmospheres. Synthetic spectra will be provided using state-of-the art atmospheric codes and will be compared to observed planet spectra.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
Programme(s)
Thème(s)
Régime de financement
ERC-ADG - Advanced GrantInstitution d’accueil
80539 Munchen
Allemagne