Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Massive reutilization of Electronic Health Records (EHRs) through AI to enhance clinical research and precision medicine

Descrizione del progetto

Sfruttare al massimo i dati delle cartelle cliniche elettroniche

Sebbene si possano estrarre informazioni estremamente preziose dalle cartelle cliniche elettroniche, queste ultime rimangono inutilizzate a causa della loro mancanza di struttura e del fatto che sono scritte in un linguaggio naturale. Il progetto SAVANA, finanziato dall’UE, consente ai professionisti sanitari di generare prove reali, effettuare nuove scoperte, creare medicina personalizzata e valutare gli esiti sanitari. A tal fine, creerà uno strumento che impiega l’elaborazione del linguaggio naturale per estrarre dati da ingenti quantità di narrazioni cliniche provenienti dalle cartelle elettroniche. Il nuovo strumento soddisferà i requisiti dei comitati etici ospedalieri, le norme dei servizi sanitari nazionali e le politiche dell’industria farmaceutica ed è rivolto a dirigenti, ospedali e ricercatori.

Obiettivo

In the last twenty years, the average return on R&D expenditure in the pharma industry has dropped from almost 18% to 3.7%. Moreover, annual funding for biomedical research has more than doubled while new drugs approvals have declined by one third. There is a wide consensus that the main cause of this problem is the exhaustion of a model intended to develop ‘broad indications’ and the need for a new ‘precision medicine’ model. We simply do not know enough about the underlying disease mechanisms involved, and more research is required to develop better disease classifications, which will enable a more targeted development approach for drugs and therapies.

Electronic Health Records (EHRs) has been used for more than ten years in most developed countries, and they gather now exhaustive clinical information of millions of patients. Leveraging EHRs could accelerate clinical research, and improve healthcare quality.

However, in order to uncover unknown disease models from EHRs, precision medicine requires massive research studies on thousands of patients (often in several countries). Currently there is no tool capable of: 1) automating the extraction of data from EHRs, and also, solving the privacy concerns raised by EHRs.

SAVANA RESEARCH uses Natural Language Processing to extract data from massive amounts of EHRs’ clinical narratives. It has the following advantages intended to make a leap in clinical research efficiency: 1) It uses only de-identified clinical records and ensures state of the art technologies to protect data privacy; 2) It is capable of decoding ten times more EHRs in half of the time; 3) It is capable of identifying 100 times more variables from EHRs; 4) And it costs 40% less.
The application of NLP to healthcare is a fast-growing market that is expected to reach 2.65 billion by 2021, by growing at a CAGR of 20.8%. SAVANA RESEARCH’s target markets are primary Europe and North America, which together comprises 75% of all clinical trials worldwide.

Invito a presentare proposte

H2020-EIC-SMEInst-2018-2020

Vedi altri progetti per questo bando

Bando secondario

H2020-SMEInst-2018-2020-2

Meccanismo di finanziamento

SME-2 - SME instrument phase 2

Coordinatore

MEDSAVANA SL
Contribution nette de l'UE
€ 943 358,07
Indirizzo
C/ JILOCA 4 PLANTA 5 DERECHA
28016 Madrid
Spagna

Mostra sulla mappa

PMI

L’organizzazione si è definita una PMI (piccola e media impresa) al momento della firma dell’accordo di sovvenzione.

Regione
Comunidad de Madrid Comunidad de Madrid Madrid
Tipo di attività
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Collegamenti
Costo totale
€ 2 408 995,78

Partecipanti (3)