Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Andreev qubits for scalable quantum computation

Descrizione del progetto

Un calcolo quantistico scalabile basato sugli stati legati dei superconduttori

Il progetto AndQC, finanziato dall’UE, si propone di gettare le basi per una piattaforma allo stato solido radicalmente nuova per il calcolo quantistico scalabile basato sui qubit di Andreev. Questa piattaforma impiega lo spin singolo e la carica intrappolati nei livelli discreti di quasiparticella superconduttori (livelli di Andreev) negli anelli deboli tra superconduttori. La flessibilità e la potenziale scalabilità della piattaforma allo stato solido proposta dipenderanno dall’uso di nanofili semiconduttori di qualità elevata ed eterostrutture planari, assieme a piombi superconduttori puliti. Il lavoro spazia dalla modellizzazione teorica dei dispositivi e dalla scienza dei materiali al trasporto quantistico e alle misurazioni di bit quantici: tutti questi vari aspetti saranno coperti dall’ampia gamma di competenze nel consorzio.

Obiettivo

Our goal is to establish the foundations of a radically new solid state platform for scalable quantum computation, based on Andreev qubits. This platform is implemented by utilizing the discrete superconducting quasiparticle levels (Andreev levels) that appear in weak links between superconductors. Each Andreev level can be occupied by zero, one, or two electrons. The even occupation manifold gives rise to the first type of Andreev qubit, which has recently been demonstrated by some of the consortium members. We will characterize and mitigate the factors limiting the coherence of this qubit to promote these proof of concept experiments towards a practical technology. The odd occupation state gives rise to a second type of qubit, the Andreev spin qubit, with an unprecedented functionality: a direct coupling between a single localized spin and the supercurrent across the weak link. Further harnessing the odd occupation state, we will investigate the so far unexplored scheme of fermionic quantum computation, with the potential of efficiently simulating electron systems in complex molecules and novel materials. The recent scientific breakthrough by the Copenhagen node of depositing of superconductors with clean interfaces on semiconductor nanostructures opened a realistic path to implement the Andreev qubit technology. In these devices, we can tune the qubit frequency by electrostatic gating, which brings the required flexibility and scalability to this platform. We will demonstrate single- and two-qubit control of Andreev qubits, and benchmark the results against established scalable solid-state quantum technologies, in particular semiconductor spin qubits and superconducting quantum circuits. To carry out this research program, we rely on the instrumental combination of experimentalists, theorists and material growers, together having the necessary expertise on all aspects of the proposed research.

Invito a presentare proposte

H2020-FETOPEN-2018-2020

Vedi altri progetti per questo bando

Bando secondario

H2020-FETOPEN-2018-2019-2020-01

Meccanismo di finanziamento

RIA - Research and Innovation action

Coordinatore

CHALMERS TEKNISKA HOGSKOLA AB
Contribution nette de l'UE
€ 523 473,75
Indirizzo
-
412 96 Goteborg
Svezia

Mostra sulla mappa

Regione
Södra Sverige Västsverige Västra Götalands län
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 523 473,75

Partecipanti (7)