Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Artificial Intelligence for Emergency Medical Services: a smart digital assistant for faster and more accurate cardiac arrest recognition during emergency calls

CORDIS fornisce collegamenti ai risultati finali pubblici e alle pubblicazioni dei progetti ORIZZONTE.

I link ai risultati e alle pubblicazioni dei progetti del 7° PQ, così come i link ad alcuni tipi di risultati specifici come dataset e software, sono recuperati dinamicamente da .OpenAIRE .

Risultati finali

AI4EMS online content

AI4EMS online content. The project content will be divide in a public section and a restricted area (accessible only to the project participants and the EC officers allocated to the project) for uploading and downloading of all of the project reports and documents.

Pubblicazioni

Machine learning as a supportive tool to recognize cardiac arrest in emergency calls

Autori: Stig Nikolaj Blomberg, Fredrik Folke, Annette Kjær Ersbøll, Helle Collatz Christensen, Christian Torp-Pedersen, Michael R. Sayre, Catherine R. Counts, Freddy K. Lippert
Pubblicato in: Resuscitation, Numero 138, 2019, Pagina/e 322-329, ISSN 0300-9572
Editore: Elsevier BV
DOI: 10.1016/j.resuscitation.2019.01.015

Utilizing Domain Knowledge in End-to-End Audio Processing

Autori: Tycho Max Sylvester Tax, Jose Luis Diez Antich, Hendrik Purwins, Lars Maaløe
Pubblicato in: 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017
Editore: NIPS

BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling

Autori: Lars Maaløe, Marco Fraccaro, Valentin Liévin, Ole Winther
Pubblicato in: arXiv preprint arXiv:1902.02102, 2019
Editore: arXiv

Exploiting Nontrivial Connectivity for Automatic Speech Recognition

Autori: Marius Paraschiv, Lasse Borgholt, Tycho Max Sylvester Tax, Marco Singh, Lars Maaløe
Pubblicato in: NIPS workshop on machine learning for audio, 2017
Editore: NIPS

On the Inductive Bias of Word-Character-Level Multi-Task Learning for Speech Recognition

Autori: Jan Kremer, Corti, Copenhagen, Denmark, jk@corti.ai Lasse Borgholt, Corti, Copenhagen, Denmark, lb@corti.ai Lars Maaløe , Corti, Copenhagen, Denmark, lm@corti.ai
Pubblicato in: 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), 2018
Editore: NIPS

Towards Hierarchical Discrete Variational Autoencoders

Autori: Valentin Liévin, Andrea Dittadi, Lars Maaløe, Ole Winther
Pubblicato in: NeurIPS Workshop on Advances in Approximate Bayesian Inference, 2019
Editore: OpenReview

Detecting Out-of-Hospital Cardiac Arrest Using Artificial Intelligence

Autori: Andreas Cleve, Dimitri Devillers, Matteo Palladini, Jerome Paris, Rose Michael, Etienne Faure, Rodolfo Bonora
Pubblicato in: 2020
Editore: European Emergency Number Association

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile