Ziel
Out-of-Hospital Cardiac Arrest (OHCA) is one of the leading causes of death worldwide. It is a time-critical condition with survival chances decreasing by 10% with every minute of delay from collapse to defibrillation. Currently, Emergency Medical Services (EMS) dispatchers use guidelines to recognise OHCA during emergency calls prior to activating the emergency response system. EMS are struggling as emergency calls have increased in Europe from 100 million calls in 2003 to 320 million in 2016. Thus, assistant decision tools will be necessary to help EMS to faster identify OHCA situations.
Our solution, AI4EMS, is the first and only smart digital assistant for EMS dispatchers that supports the triage decision-making by: 1) processing and analysing emergency calls in real-time; 2) recognising OHCA in an evidence-based process from large amounts of historical data (unfeasible to humans); and 3) presenting the most important insights to the EMS dispatcher in a user friendly manner. AI4EMS allows for faster (reducing almost 3 minutes on average) and more accurate (increase from 73.9% human accuracy to 95%) OHCA recognition by leveraging advanced speech analytics and AI. We offer a user-friendly and secure SaaS solution capable of communicating using Natural Language, accessed via a Nvidia TX1-based device. We are directly supporting the eHealth Action Plan 2012-2020 and Digital Single Market (DSM) strategies, by providing a disruptive ICT technology to improve EMS dispatch efficiency and triage accuracy – which will impact the economy and society at large.
With the upgrade and commercialisation of AI4EMS we will disrupt the Artificial Intelligence (AI) market for healthcare taking a step further on our goal to become world leaders in EMS artificial intelligence. Forecasted sales will render revenues of €86.7 million in the first five years of commercialization and a total of 127 new jobs will be created by 2024.
Wissenschaftliches Gebiet
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
Programm/Programme
Thema/Themen
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenUnterauftrag
H2020-SMEInst-2018-2020-2
Finanzierungsplan
SME-2 - SME instrument phase 2Koordinator
2200 KOBENHAVN
Dänemark
Die Organisation definierte sich zum Zeitpunkt der Unterzeichnung der Finanzhilfevereinbarung selbst als KMU (Kleine und mittlere Unternehmen).