Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Bringing down costs of BIPV multifunctional solutions and processes along the value chain, enabling widespread nZEBs implementation

Project description

Providing integrated photovoltaics sufficient momentum for commercialisation

Integrating photovoltaics into parts of the building envelope such as the roof and facade could transform a city’s carbon footprint, significantly reducing its reliance on grid electricity generated by burning fossil fuels. Despite the potential of building-integrated photovoltaics, their market uptake is limited because the photovoltaics industry has failed to provide holistic solutions that could meet the energy target set by the EU. The EU-funded BIPVBOOST project plans to develop technical solutions to foster the application of building-integrated photovoltaics. The project will seek to achieve significant cost reduction of the technology, while maintaining flexibility of design, high performance, long-term reliability, design aesthetics, standardisation and compliance with legal regulations.

Objective

Building-integrated photovoltaic (BIPV) technology has the potential to significantly contribute to the achievement of the demanding energy efficiency targets set by the EU, however, its market uptake has been hindered in the past years by the difficulties of the industry in providing holistic solutions complying with key demands from decision makers and end-users. In this sense, it is a common perception that a joint industrial effort is needed to conceive and develop highly-efficient and multifunctional energy producing construction materials, in order to provide market opportunities at a world-wide level for the European photovoltaic and construction industry value chains. This market deployment depends critically on the achievement of ambitious targets in terms of significant cost reduction, flexibility of design, high performance, reliability in the long-term, aesthetics, standardization and compliance with legal regulations. Within this context, the main objective of BIPVBOOST project is to bring down the cost of multifunctional building-integrated photovoltaic (BIPV) systems, limiting the overcost with respect to traditional, non-PV, construction solutions and non-integrated PV modules, through an effective implementation of short and medium-term cost reduction roadmaps addressing the whole BIPV value chain and demonstration of the contribution of the technology towards mass realization of nearly Zero Energy Buildings. In order to address these global objectives and maximize the impacts, the project will optimally combine and demonstrate in real operation conditions: (i) a completely flexible and automated BIPV manufacturing and control line, (ii) a large portfolio of multifunctional BIPV products optimally integrated in the building envelope, (iii) process and energy management innovation based on digitalization and (iv) advanced standardization activities supporting the qualification of BIPV systems for a massive implementation in the building skin.

Fields of science

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

Call for proposal

H2020-LC-SC3-2018-2019-2020

See other projects for this call

Sub call

H2020-LC-SC3-2018-RES-SingleStage

Coordinator

FUNDACION TECNALIA RESEARCH & INNOVATION
Net EU contribution
€ 903 125,00
Address
PARQUE CIENTIFICO Y TECNOLOGICO DE GIPUZKOA, PASEO MIKELETEGI 2
20009 DONOSTIA-SAN SEBASTIAN (GIPUZKOA)
Spain

See on map

Region
Noreste País Vasco Gipuzkoa
Activity type
Research Organisations
Links
Total cost
€ 903 125,00

Participants (20)