Objetivo
The reasoning which emerges the need for creating WindiBox is to effectively tackle the existence of limited wind turbine applicability for wind energy generation in buildings on a global scale. There is an obvious technological gap in the market, covering the exploitation of low speed air flows, especially in urban environments and areas where the dynamics of air are low and do not allow the installation of common wind turbines. According to the requirements imposed by the Energy Performance of Buildings Directive all new buildings must be nearly zero-energy by the end of 2020. All new public buildings must be nearly zero-energy by 2018.
The WindiBox device is comprised of a vertical axis wind turbine, enclosed inside a box-shaped, convergent-divergent casing (diffusers). This casing has been proven to augment the rotational speed of the wind turbine by a factor of at least 2.5 compared to a stand-alone turbine and additionally, enhancing its power output by at least 3 times. WindiBox size of 1m height – 2.5m width – 4m length offers power outputs ranging from 2700-3400kWh annually for wind speed 5m/s. The casing is also utilized to act as an environmental shield for minimal noise and vibration emissions since its extended surface area can be exploited for the addition of insulation. WindiBox overcomes the technological limitations of existing solutions in the market as well as the targeted milestones for CO2 emissions imposed by the European Union.
What differentiates WindiBox from the competition is that it offers an unparalleled cost-effective solution of ROI less than 4.5 years for 5m/s with exceptional performance characteristics, disrupting the existing market of renewables.
Our goal is to bring the WindiBox solution to market, after preparing an elaborate business plan. According to our initial plan, within 5 years from WindiBox commercialization, revenues will reach an annual total of approximately 19.2 million euros and net profits estimated at 30%.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- social scienceseconomics and businessbusiness and managementbusiness models
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energywind power
- natural sciencesbiological sciencesecologyecosystems
- natural sciencesmathematicspure mathematicsgeometry
- engineering and technologymechanical engineeringvehicle engineeringaerospace engineeringaeronautical engineering
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-SMEInst-2018-2020-1
Régimen de financiación
SME-1 - SME instrument phase 1Coordinador
2060 NICOSIA
Chipre
Organización definida por ella misma como pequeña y mediana empresa (pyme) en el momento de la firma del acuerdo de subvención.