Descrizione del progetto
Un nuovo ciclo energetico combina in modo vincente CO2 ed energia solare
Le centrali elettriche trasformano l’energia termica in elettricità. Le centrali a combustibile fossile tradizionali generano calore dalla combustione, usando l’acqua o il vapore come fluidi di lavoro per convertire l’energia termica in energia meccanica in una turbina che poi genera elettricità. L’utilizzo di CO2 supercritica come fluido di lavoro è considerato sempre più interessante poiché consente livelli di efficienza termica superiori a costi più contenuti. Il progetto SCARABEUS, finanziato dall’UE, sta sviluppando un nuovo concetto di ciclo energetico basato sull’utilizzo di miscele di CO2 supercritica per gli impianti solari a concentrazione. Questa tecnologia dovrebbe ridurre in modo significativo i costi operativi e di capitale, consentendo di contenere notevolmente i costi dell’elettricità derivante dagli impianti solari a concentrazione.
Obiettivo
"The main objective of the SCARABEUS project is the reduction of the CAPEX and OPEX in concentrated solar power technologies by about 32% and 40% respectively, leading to a final cost of Electricity below 96 €/MWh (lower than 30% of the actual value) through an innovative power cycle based on CO2 blends. This cost reduction will be able to close the gap between CSP and other renewable technologies. This project fits in the call ""New cycles and innovative power blocks for CSP plants."" as a brand new power cycle concept will be developed. With respect to state-of-the-art sCO2 cycles, the addition of small quantities of selected elements to pure CO2 (i.e. inorganic compounds and fluorocarbons), known as CO2 blending, can increase the CO2 critical point allowing the adoption of condensing cycle even in typical CSP plant locations. Condensing sCO2 cycles have higher thermal-to-electricity conversion efficiency with respect to conventional steam and sCO2 cycles.In addition, higher maximum operating temperature with respect to steam cycles can be adopted with further efficiency increase. The combination of these two aspects enables drastic reductions of the levelised cost of electricity In the project, CO2 blends stable at temperatures up to 700°C (which corresponds to 100°C above current CSP maximum temperatures) and with a pseudocritical temperature of about 50°C will be investigated. A preliminary screen was performed identifying some potential candidates (i.e. TiCl4). Assuming the simple cycle configuration, the TiCl4-blended CO2 outperforms the cycle using pure CO2 by 5% points at 700°C . When using the advanced sCO2 cycle, the efficiency gain is reduced to 2% points, but with significant cost savings. The proposed CO2 blend will be tested in a loop at 300 kWth scale with typical CSP fluids for 300 hours. Long term stability will be measured for 2000 hours and material compatibility assessed through dedicated experiments."
Campo scientifico
Parole chiave
Programma(i)
Argomento(i)
Invito a presentare proposte
Vedi altri progetti per questo bandoBando secondario
H2020-LC-SC3-2018-RES-TwoStages
Meccanismo di finanziamento
RIA - Research and Innovation actionCoordinatore
20133 Milano
Italia