Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Evolvable platform for programmable nanoparticle-based cancer therapies

Objectif

EVO-NANO aims to create an integrated cross-disciplinary platform for the artificial evolution and assessment of nanoparticle-based drug delivery systems. Nanoparticles (NP) are increasingly being studied in cancer research for their ability to improve diagnosis accuracy and/or deliver tailored treatments directly to tumours. However, their effective biodistribution is still a major limitation. The challenge is to discover how to program collective behaviour of the trillions of NP interacting in a complex tumour environment. Finding effective NP designs that give rise to desired outcome will require a new class of evolutionary algorithms that can simultaneously 1) generate novel NP-based anti-cancer strategies, 2) search over a large space of solutions, and 3) adapt to a wide variety of scenarios. Our novel evolutionary approach will be integrated with molecular dynamics simulations, PhysiCell (http://physicell.mathcancer.org) and STEPS simulators that reproduces realistic NP motion and interactions within the tumour environment and with other NP. The most promising NP designs will then be synthesized and tested in vivo and in vitro on breast and colon cancer stem cells using mouse cancer xenografts and microfluidic testbeds featuring cancer microenvironments. To promote translation of the platform from early stage research into a commercialized product for patients, we will work with industrial partner ProChimia Surfaces, organize ‘Industry Open Days’ for potential investors and develop a translation strategy.
EVO-NANO is a multidisciplinary project that will create an entirely novel NP design platform for new cancer treatments, capable of autonomously evolving both innovative and adaptive solutions. The proposed platform has the potential to be at the forefront of cancer nanomedicine by enabling much faster development and assessment of new cancer treatments, than is done today. The project will generate concrete tools for the predictive design of nanomedicines that could be applied in other clinical fields.

Champ scientifique

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.

Appel à propositions

H2020-FETOPEN-2016-2017

Voir d’autres projets de cet appel

Sous appel

H2020-FETOPEN-1-2016-2017

Coordinateur

UNIVERZITET U NOVOM SADU, POLJOPRIVREDNI FAKULTET NOVI SAD
Contribution nette de l'UE
€ 284 843,75
Adresse
TRG DOSITEJA OBRADOVICA 8
21000 Novi Sad
Serbie

Voir sur la carte

Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 284 843,75

Participants (6)