Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Epidermal sensors as personal chemical environmental monitoring tools

Objetivo

The E-SCENT project aims to develop wearable chemo-responsive sensor arrays for personal monitoring of exposure to volatile airborne pollutants. Indoor levels of volatile organic compounds (VOCs) can be up to 1000 times higher than background outdoor levels, and can have serious harmful health effects. Measurement of exposure to airborne pollutants at the individual level is an integral part of human health risk assessment, but is currently reliant on macro-level air quality data and lacks the necessary tools for monitoring at the individual level. A number of personal environmental monitoring devices have recently emerged, but are constrained to sensing physical parameters. E-SCENT will advance personal environmental sensor technology by developing the first personal chemical environmental monitoring tool comprising an array of cross-responsive materials for colourimetric detection of VOCs in a wearable epidermal patch format to enable seamless collection of multi-parameter exposure data at the individual level.
A diverse range of chemo-responsive dyes will be incorporated in porous matrices for deposition and encapsulation on stretchable conformable films suitable for integration with the epidermis. Sensor protypes will be developed and their deployment in a variety of indoor environments will enable chemical fingerprinting of ambient VOCs. Sensor colour change upon exposure will be quantitatively measured using smart phone image capture technology with image analysis software to examine sensor colour space and changes. Chemometric analysis of multidimensional colourimetric data will be used for classification of VOC exposure levels. E-SCENT will enable rapid low-cost data generation that will advance air quality research and will prove to be a key technology in informing exposure assessment, related health impacts and counter measures by informing policy development at local and European levels.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.

Para utilizar esta función, debe iniciar sesión o registrarse

Coordinador

DUBLIN CITY UNIVERSITY
Aportación neta de la UEn
€ 175 866,00
Dirección
Glasnevin
9 Dublin
Irlanda

Ver en el mapa

Región
Ireland Eastern and Midland Dublin
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 175 866,00