Periodic Reporting for period 1 - rSAMs-NANO (Nanoparticles with switchable shells for virus sensing and inhibition)
Reporting period: 2018-09-03 to 2020-09-02
The objectives of this project were:
1) to investigate the use of rSAMs as dynamic nanoparticle shells for multivalent inhibition of pathogen infection, and
2) to assess such systems as nanoplasmonic sensors for antibody-free ultrasensitive and robust sensors for rapid in situ detection of viruses.
The project’s objectives have been largely fulfilled and advanced the state of the art in the following ways:
1) We prepared and studied a series of rSAMs layers comprising two different bioactive ligands and studied their affinity to influenza virus proteins such as neuraminidase and hemagglutinin
2) We demonstrated that mixed rSAMs featuring ligand-terminated groups form adaptable surfaces that are optimal for multivalent receptor binding
3) The selected rSAMs were transferred on the 3D surfaces such as gold nanoparticles, nanorods, and nanosquares
4) We have demonstrated that the resulted 3D multivalent hybrid materials bind the viral proteins and can be used as for antibody-free ultrasensitive and robust sensors for rapid in situ detection of viruses and virus inhibition.
Overall, the project has produced commercially exploitable results. We have engaged in a proof-of-concept study with leading sensor companies and the ER is currently acting as principal investigator in an industry-academia collaborative project. Finally, the technology developed by the ER has been patented and will be disseminated in a number of publications in preparation.
Economic societal impacts. The innovative technologies improving the virus surveillance programs are of fundamental importance to public health. The global anti-viral market demonstrated rapid growth in recent years and the Covid-19 pandemic will strongly accelerate this trend. The key market challenges remain the high cost of drug development and the need for the techniques providing an accurate evaluation of the antiviral treatment efficiency. In this context, the proposal rSAM-Nano meets well the market demands but success can only be achieved provided that the results are effectively commercialized. This will benefit society as a whole by creating jobs as well as novel medical solutions including tools for diagnosis and anti-viral treatment.