Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

PISCES - Reducing bycatch – Saving fishing crews money – Facilitating compliance Enabling the long-term sustainability of the fishing industry

Cel

"Across the globe 1 in 5 fish caught is the ""wrong fish"" because most of the world's 6,4million commercial fishing vessels rely on traditional fishing methods which lack selectivity. Endangered species are at risk, as well as juvenile fish (and therefore the long term fish stock population size), with over 63% of fish species no longer within biologically sustainable fishing levels.
Collectively, this costs >$1bn p.a. today. With over 1m people globally relying on fish as their primary source of protein, this poses a considerable threat to (future) food security.

To address the problem of fish bycatch SafetyNet Technologies (SNT) designed and developed a novel lighting mechanisms - PISCES - which applies cutting edge research in fish physiology so fishing crews only catch the fish they want to catch. Having validated a prototype in North Sea field trials in 2015 (CEFAS provided independent verification of 60% reduction in bycatch), SNT now seek to commercialise their offering. Due to shared regulatory drivers (EU discards ban), shared market participants and similar fish species, SNT believe European markets make prime target for early exports.

To support this objective SNT now seek a Phase 1 feasibility study to validate the hypothesis of PISCES' pan-European potentail, and to guide the foundational market knowledge from which a robust commercialisation/internationalisation strategy can be executed.

Estimated to generate cumulative revenues of €16.8m by 2023, and create 24 new jobs, as well as allowing SNT to generate a project RoI >55%"

Dziedzina nauki

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego.

Zaproszenie do składania wniosków

H2020-SMEInst-2016-2017

Zobacz inne projekty w ramach tego zaproszenia

Szczegółowe działanie

H2020-SMEINST-1-2016-2017

Koordynator

SAFETYNET TECHNOLOGIES LIMITED
Wkład UE netto
€ 50 000,00
Adres
NORTH HOUSE 198 HIGH STREET
TN9 1BE Tonbridge
Zjednoczone Królestwo

Zobacz na mapie

MŚP

Organizacja określiła się jako MŚP (firma z sektora małych i średnich przedsiębiorstw) w czasie podpisania umowy o grant.

Tak
Region
South East (England) Kent West Kent
Rodzaj działalności
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Linki
Koszt całkowity
€ 71 429,00