In WP1, a standalone specialty previously validated micromechanics-based progressive failure analysis code was utilized for the accurate extraction and calibration of the composite properties. Effective composite properties were successfully compared with the previously theoretically derived (D4.1) and the experimentally measured properties. Extracted material properties are important for the project continuation and its successful outcome as they consist the required input for the numerical simulation of the Smart Container which will guide further testing of components and structures. The material characterization tests were contacted according to the respective ASTM and ISO standards as required from the project description. In summary, all mechanical properties were characterized, the bulk of them physically and a small percentage of them virtually. The impact testing of Macro-Lite panel specimens was also conducted, according to the AITM-1-0057 test method, as per project requirements. In WP2, UMAN team has presented a detail design of the fire detection and suppression for the smart container. We further assessed the fire suppression for the smart container and we presented a detail plan for the prototype testing, to be used as a guideline for Performance Testing fire testing. In WP3, the design of the Robotic Platform was completed, focusing on the most critical components of the system (wheels, actuators, bearing units, etc.). Drawings from a detailed CAD model were provided, showing the distribution of the different subsystems in the RP. The external dimensions and the actuation subsystem of the RP were detailed, and the design steps and challenges were described in detail. All selected components were shown in detail in CAD form. A detailed 3D simulation of the RP was developed in the multibody simulation environment MSC Adams to facilitate several design and sizing decisions. The simulation is very detailed, and includes 3D kinematics and dynamics of the wheels and of the platform, the effects of friction, and of the actuators, while the environment is modelled as level or tilted and includes the gap and disparity between the aircraft floor and the loader. This allowed us to validate the entire design and its feasibility. In WP4, after the initial development phase, the RMC system underwent several laboratory tests. The tests were performed according to requirements described in relevant Deliverables of the Intellicont Project. The components selected including the sensors and the circuit boards are the same as the ones that are going to be installed in the containers during the system’s pilot testing. The integrity and robustness of the measurements were assured by performing each series of measurements at least 3 times, according to the standard laboratory test practice. In WP5, we completed the sensors’ integration, the election of frame’s fiber configuration, the design of support brackets, the definition of the final design of PET rigid foam which acts as counterpart between the base-plate and the Container when the definitive design of the frame is set, the purchase the straps/belts for manual handling, the definitive design of the access into the baseplate, to be able to replace batteries and carry out maintenance operations and the final design of the fire-resistant door. Additionally, we completed the integration of the ICT platform/interface components (batteries, wires, communication systems) in the Container’s design, detailed CAD drawings of the components to manufacture including tolerances, the order and purchase of the pultrusion molds, the manufacturing of the L-shaped pultruded profiles (FRP frame manufacturing), the FRP frame manufacturing, the machining the roof, floor, wall panels, container parts and PET foam counterparts. The machining of the aluminum baseplate and overall assembly is on-going.