Objective
SHui is conceived as a network integrating long-term experiments of its 19 academic and SME partners across different environmental conditions and cropping systems in the EU and China. It provides a platform for research on soil-water resources management under water scarce conditions, to better understand the linkages between agricultural soil hydrology and sustainability and for a systematic assessment of adaptation and mitigation methods. It will develop and implement new strategies to increase water use efficiency and yield, based on sustainable intensification through integrated use of soil and water across different spatial scales. At farm level, this includes digital agriculture solutions integrating in situ and remote sensors and simulation models to exploit an improved understanding of the relationship between crop yield variability and soil hydraulic properties, optimizing circular approaches to re-use water and using waste water sources. These technical approaches are reliant on optimum data utilization and transdisciplinary research with multiple stakeholders. At regional scales, the aggregation of biophysical and socioeconomic variables in dynamic models will evaluate the impact of different policy strategies, to support decision makers to evaluate different scenarios of land-use dynamics, economic context and current and future climate in EU and China, including assessments of water and carbon footprint. SHui will exploit scientific, technological and social innovations by disseminating and communicating these to multiple stakeholders, and implementing novel technological packages from farm to large regional scales. It aims to make a significant contribution to the EU and China Research Agenda for Agriculture in providing food security and optimum use of scarce soil and water resources. Training a cohort of early career scientists in soil conservation and water-saving practices, SHui’s legacy will extend beyond the project duration.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologyenvironmental engineeringwater treatment processeswastewater treatment processes
- engineering and technologyenvironmental engineeringnatural resources managementland management
- natural sciencesearth and related environmental scienceshydrology
- natural sciencesearth and related environmental sciencessoil sciencesedaphology
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
You need to log in or register to use this function
Keywords
Programme(s)
- H2020-EU.3.2. - SOCIETAL CHALLENGES - Food security, sustainable agriculture and forestry, marine, maritime and inland water research, and the bioeconomy Main Programme
- H2020-EU.3.2.1.1. - Increasing production efficiency and coping with climate change, while ensuring sustainability and resilience
- H2020-EU.3.2.1.2. - Providing ecosystems services and public goods
Funding Scheme
RIA - Research and Innovation actionCoordinator
28006 Madrid
Spain