Objectif
"Eco-Bot aims to utilize recent advances in chatbot tools and advanced signal processing (i.e. energy disaggregation) using low-resolution smart meter-type data with the goal of changing their behaviour towards energy efficiency. Eco-Bot targets to a personalized virtual energy assistant to deliver information on itemized (appliance-level) energy usage through a chat-bot tool.
The ""chat-bot"" functionality will be use an attractive frontend interface, permitting seamless communication in a more natural and interactive way than a traditional mobile application. This way, Eco-Bot aims to achieve a higher level of engagement with consumers than previous efforts (i.e. serious games, gamification, competitions or other interactive ICT), by adding a more engaging form of interaction with existing platforms that has been proven in different market settings.
The proposed system considers knowledge of the delivered multi-factorial models, including rebound-effects, as a result of the baseline research on both European and International activities. Then, based on advanced ICT, such as knowledge engineering, machine learning, expert systems, the project transforms the multi-factorial models for energy reduction to interactive, personalized and targeted recommendations to consumers on how to save energy.
Eco-Bot uses also existing NILM, e.g. energy disaggregation methods, and data analytics to break down consumption to the appliance level, where this is possible (smart meters at reasonable granularity, adequate number of information collected) so as to make consumers aware of their most energy-consuming devices.
The project will demonstrate the system in three different use cases, each one representing a different business model (B2B / B2B2C /B2C). We aim to validate our system across real and diverse conditions such as socio-cultural, environmental, demographic, climate and consumption, so as to draw concrete conclusions regarding performance, effectiveness, affordability, etc."
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- ingénierie et technologiegénie de l'environnementénergie et combustiblesénergie renouvelable
- ingénierie et technologiegénie électrique, génie électronique, génie de l’informationingénierie électroniquetraitement des signaux
- sciences naturellesinformatique et science de l'informationingénierie de la connaissance
- sciences naturellesinformatique et science de l'informationintelligence artificiellesystèmes experts
- sciences naturellesinformatique et science de l'informationintelligence artificielleapprentissage automatique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Programme(s)
Régime de financement
IA - Innovation actionCoordinateur
10707 Berlin
Allemagne
L’entreprise s’est définie comme une PME (petite et moyenne entreprise) au moment de la signature de la convention de subvention.