Deliverables
fulfilling SO4The report will include update of the KPI definition report recommendations coming from demo activities mitigation actions for proper cost benefit analysis in case of not valid results andor insufficient dataThe deliverable will also include the updated versions of Deliverables D82 D83 D84 and D85 updates for those deliverables was originally scheduled at M40 and M46 due to extension request amendment related to CoViD emergency only one update is scheduled to be attached to this deliverableRelated to Task 86
Final report on standardization objectives accomplishedThe deliverable details the initiatives undertaken by the project consortium aiming at standardization of testing methodologies and design procedures developed in the framework of the projectIt detailsPerson involvedStandardization body in which the initiatiive has framedList of performed activities with accomplished tasks and produced documentsPlan for further activities in the same bodyRelated to Task 24
Verification of sensitivity and reliability of ND methods and sensorsThe deliverable reports the results of the verification of sensitivity and reliability of non-destructive sensors employed in measuring on-site the durability of UHDC for XS and XA exposure conditions and addresses choices for the use in the pilot in WP8. Related to Task 5.2.
Recommendation for the use of recycled UHDC elements as aggregates in new concrete.The report, in a harmonized framework with existing national and international guidelines and standards, will contain information for the recyclability of UHDC disposed elements after exposure to different defined conditions. These include: determination of the characteristics of the recycled aggregate, with respect to physical and chemical properties.; measurement of rheological, mechanical and durability characteristics produced with recycled UHDC, definition of limits for recycled UHDC with respect to different indicators. The parameters and the limits defined, defined shall form the basis of new recommendations for recycled UHDC. Related to Task 4.5.
Particularisation of durability criteria for design of UHDCs to extend service life of infrastructures in XS and XA environments.Composition and durability criteria for designing UHDCs that ensure the service life improvements of 100% in un-cracked state, 30% in cracked in XS and XA conditions. Related to Task 5.3.
Recommendation on the use of CA, nano-fibres and nano-cellulose for producing UHDCThe deliverable will contain information about crystalline admixtures, nanofibers and nanocellulose and the corresponding process parameters that will enable successful formulation and delivery of UHDC functionalized through the one-of-a-kind properties of the additives. Related to Task 4.1.
Definition and description of the scenarios for WP8 pilotsThis document will collect and analyse case-study data provided by the industrial partners about durability concrete pathologies for the applications of interest, in order to establish the key factors for durability depending on the application: large-scale civil works in dock construction and enlargement, concrete application in geothermal plants, design and construction of precast elements for harbour services and coastal defence infrastructures and underground structures treated with local repairing interventions employing crystalline additives. Related to Task 3.2.
Consolidated modified MODA template and LCA formalismThese deliverables are aimed at updating the MODA template, taking also into account the Life Cycle Assessment (LCA) analysis and results, for the evaluation of the durability and sustainability performances of the proposed materials. The durability performance will be investigated through modeling activities, based on the investigation of the: 1) aging phenomena of UHDC, as modified by functionalizing constituents, including corrosion of reinforcement; 2) crack self-sealing/healing processes in UHDCs as also engineered through functionalizing constituents. Instead, the environmental performance will be analyzed through the: 3) Life Cycle Assessment methodology. In detail: - I version M30: The first version of the deliverable will describe the modelling activities to assess the aging of UHPFRC and its service-life prediction when exposed to extremely aggressive environments according to the MODA template workflow: • Identification and “importance weighing” of physical and chemical degradation processes originating from aggressive environments, taking into account the mineral matrix composition and its tailored functionalities, including self-healing, modifications due to micro-cracked conditions, the matrix/reinforcement/aggregate interfaces and the reinforcements based on successive outcomes of WP4; • Definition of serviceability limit states in each detected aspect of degradation and deterioration; • Compilation of modified MODA template. Moreover, in this deliverable an overview of the LCA will be also reported focusing on the first phase of the methodology: the Goal and Scope Definition phase, according to the ILCD Handbook and the ISO 14040 and 14044 standards. - II version M37: the second version of the deliverable will present the preliminary results of the LCA of the selected UHDC solutions (materials and components) using, for the Life Cycle Inventory phase, data and feedback coming from the other WPs (i.e. WP4, WP7 etc.). - III version M42: the final version of the deliverable will update and validate the results of the LCA of UHPC. Data for the LCA analysis will be updated on the basis of the results of demonstration and pilot activities (WP7). Related to Tasks 6.1 and 6.2.
Guidelines for mix-design formulation of functionalized UHDC and adaption to different application technologiesThe deliverable demonstrates the fulfilment of SO1 and contains information on mix design concept and criteria for UHDCs finalized to different application technologies (including self consolidating, textile impregnated) and different exposure conditions. Related to Tasks 4.2, 4.3 and 4.4.
Verification of durability of UHDCs under XS and XA accelerated testsThe report summarizes the results and provides guidelines to check the durability of UHDC through accelerated exposure tests to the devised aggressive environments. It addresses measurement of the change of chemical composition and microstructures via SEM, EDS, TGA and XRD. Related to Task 5.1.
Guidelines for follow-up initiativesThe deliverable contains the plan for the followup initiative meant at increasing the impact of the project even after its completionThe aforementioned initiatives will be categorized and reported as followsdisseminationpublic awareness raising initiativescontinued structure monitoringtechnical training initiativespatenting and commercial exploitationapplication for competitive project funding at loca national and international level including COST actionsRelated to tasks 23 and 92This deliverable will also include final updated versions of D 61 D 71 and D 91
Final report on innovation managementThe reports contain a resume of the management of the acitvities performed during the related reporting periods detailing completed deliverables achieved milestones occurred and mitigated risks including detail of actions put into practice for mitigation coordination and managements events held dissemination activities undertaken and completed and financial summaryThey also contain a critical appraisal on the efficacy of the implemented management procedures and in case needed and implemented readjustments as well as on actions undertaken to steer the project activities towards a more effective accomplishment of task completion and milestone achievementsThe report also contains details on actions accomplished in the management of innovation produced in the course of the project including IPR actions put into placeRelated to task 23 and 92
Understanding the durability performance of UHDC-XS and UHDC-XADurability performance and processes of UHDC exposed to simulated XS and XA environments Analyses of critical durability properties evolution from different characterization techniquesRelated to Task 54 and fulfilling SO1
Definition of key durability parameters for each scenarioReport justifying durability Key Performance Indicators and their target values to be achieved by the designed UHDCs for each scenario, taking into account exposure conditions, type of structure and required application (new/retrofitting). Related to Task 3.1.
Key Performance Success Indicators, and common testing conditions.Definition of the Key Performance Success Indicators for the pilots, specifying: success criteria, common and specific testing conditions and timing of monitoring for each scenario. - Monitoring and sensor systems type and location to be employed in pilot scale validation,. - Specification of the measurable goals, minimum target values, and success criteria to be used for the validation in real conditions. - Identification of common operating conditions to be applied during demonstration. Related to Task 8.1.
report on networking in the framework of EMMCThe report will provide a summary of the networking activities performed by involved partners mainly TUD PoliMi and CSIC in the framework of the EMMCRelated to specific aspect of Task 94
Life Cycle Sustainability Assessment: LCA, LCC and SLCAThis deliverable is aimed at describing the global sustainability performance of developed solutions, (environmental, economic and social) compared to conventional technologies. The first version (M36) will describe the LCC and SLCA methodologies and summarize the preliminary economic and social results of the investigated solutions. This first version will also include update, if any, of D6.1 (submitted at M30). The final version (M51, which will be included in D2.5), using the data of D5.1 (M42) and updating and validating the results of the previous D6.1, will combine and integrate the outputs of LCA, LCC and SLCA into an eco-efficiency assessment (i.e. Life Cycle Sustainability Assessment), identifying the solutions (materials and components) with the best sustainability performance. Related to Tasks 7.1 and 7.2.
for professionals, PhD and researchers replicated also at month 48 Contents of the two events can be as follows: Event 1: focus on material production and mix-design composition, benefits achieved in terms of durability, preliminary DAD approach and demo designs; Event 2: present the report D5.3 with the code format (practitioner) version of the DAD and develop complete design examples taking from the pilot, at that time under solid validation stage. Related to Task 9.7.
Theoretical model to evaluate aging and degradation of UHDC in aggressive environmentsfulfilling SO2The deliverable is a theoretical model to evaluate aging and degradation of UHDC in EAE to both understand and predict how the environmental impacts affect the service life of structures In doing so Specific Objective 2 is fulfilledRelated to Tasks 63 and 64
project brochuresupdated at months 28 and 38 Design, print and update of brochures to disseminate the project activities in the communication events organized (fairs, meetings, website, etc). The goal is maximizing the impact and reach potential future customers. The brochure will be market-oriented in order to support at medium term the commercialization of the technologies developed in the project. Related to Tasks 9.3 and 9.6.
"New DAD concept ""tailored"" to the use of UHDC, assessing the structures durability and LCA"fulfilling SO3The first part of deliverable is a new UHDCtailored DAD concept assessing structure durability The report will present it in a code format eg fib Model Code 2020 and will include mixdesign and productionidentification of material properties to be employed in designmethodologies for ULS and SLS verification Durability limit states verification which move from the scenario for the definition of actions and degradation processes Selfhealing is accounted for through the modifications of the degradation process as well as through the healable crack width conceptLCA of UHDC exposed to EAE following a cradletocradle approach Hereby Specific Objective SO3 is fulfilledRelated to Tasks 65 and 66
led by STRESS LTP RINA Report on the description of the Durability Assessment based Design methodology (DAD) which will be adopted to formulate and develop the UHDC material and for the structural design of the intended application cases. Based on the previously identified structures and operational scenarios, and on the associated key performance indicators, a durability evaluation and modelling activity in real service conditions will be carried out. Results of the analysis developed in WP2 will be applied in the framework of the monitoring and validation activities of the pilot demonstrator, to be performed in WP7. The deliverable will be divided into two parts: 1) I version M18: Using the output of T2.2., relating to the identifications of key factors affecting material and structural durability, the general description of the DAD concept and methodology for the formulation of UHDC will be presented. The key factors will be also characterized through the preliminary analysis and the structural modelling at macro scale of the identified structures (T2.2), considering the case with or w/o the adoption of the UHDC. 2) II version M32: validation and updates of the DAD methodology will be provided through a continuous interaction with the activities and the results of others WPs; in particular, the DAD will be contextualized through its application on the pilot case studies (WP7). Related to Task 3.3.
UHDC retrofitting pilot reportThe deliverable will include the activity dealing with the retrofitting of a r/c water tower in the Grand Harbour region in Malta. It will contain information about the design of the structure and of the monitoring system, integrated and designed for short term and long term monitoring, data collection, communicating and processing, the construction and implementation, the monitoring phase and data collection and the validation of the intervention and decommissioning. Appropriate choice of materials including UHDC mix based on the defined constituents and for the specific site and environmental exposure conditions will be detailed. It will be updated at months 40 and 46. Related to Task 8.5.
It contains information on the management of data generated by the project activities both during the 4years span of the project and after the project has been completed. It will be structured as follows: 0. Administrative data on the project and on the DMP; 1. Dataset description, generation and collection, including type of study, source and type of data, nature and format, amount and requirements for hardware and software, data reuse and integration and value of the data set; 2. Data management, documentation and curation, including storage access and backup policies, metadata and data standards, and quality; 3. DATA SECURITY AND CONFIDENTIALLY OF POTENTIALLY DISCLOSIVE INFORMATION, including identification of confidential and sensitive data, main risks to their security, ethics and legal compliance; 4. Data selection and preservation, including definition of the data which will be preserved and how and how long; 5. Data sharing, governance of access, roles and responsibility of users; 6. Responsibilities and resources 7. Any other relevant institutional policies for data sharing and securities. Related to Task 2.2
RDC will lead the creation and update of the project website (www.uhdc.eu), which will be the main platform to upload the project contents and link the sources with additional information. On the site the project public results will be uploaded and updated, together with activities, newsletters, brochures, public reports and link to scientific papers. The site will be promoted in social networks, websites of the beneficiaries, brochures and fairs. The MOOC will be organized through this website. Related to specific aspect of Task 9.4.
Publications
Author(s):
Marta Roig-Flores, Ruben Paul Borg, Cecilia Ruiz-Muñoz, Eduardo J. Mezquida-Alcaraz, Ester Giménez-Carbó, Albany Milena Lozano Násner, Pedro Serna
Published in:
European Journal of Environmental and Civil Engineering, 2021, Page(s) 1-16, ISSN 1964-8189
Publisher:
Taylor and Francis Inc.
DOI:
10.1080/19648189.2021.1997826
Author(s):
Estefania Cuenca; Leonardo D'Ambrosio; Dennis Lizunov; Aleksei Tretjakov; Olga Volobujeva; Liberato Ferrara
Published in:
Cement and Concrete Composites, Issue 5, 2021, Page(s) 1-17, ISSN 0958-9465
Publisher:
Pergamon Press Ltd.
DOI:
10.1016/j.cemconcomp.2021.103956
Author(s):
Estefanía Cuenca; María Criado; Mercedes Giménez; María Cruz Alonso; Liberato Ferrara
Published in:
ASCE Journal of Materials in Civil Engineering, Issue 12, 2022, Page(s) 1-17, ISSN 0899-1561
Publisher:
American Society of Civil Engineers
DOI:
10.1061/(ASCE)MT.1943-5533.0004375
Author(s):
Salam Al-Obaidi, Patrick Bamonte, Massimo Luchini, Iacopo Mazzantini, Liberato Ferrara
Published in:
Infrastructures, Issue 5/11, 2020, Page(s) 102, ISSN 2412-3811
Publisher:
MDPI
DOI:
10.3390/infrastructures5110102
Author(s):
Salam Al-Obaidi; Marco Davolio; Francesco Lo Monte; Ferdinando Costanzi; Massimo Luchini; Patrick Bamonte; Liberato Ferrara
Published in:
Case Studies in Construction Materials, Issue 7, 2022, ISSN 2214-5095
Publisher:
Elsevier BV
DOI:
10.1016/j.cscm.2022.e01202
Author(s):
Estefanía Cuenca, Stefano Rigamonti, Enricomaria Gastaldo Brac, Liberato Ferrara
Published in:
Journal of Materials in Civil Engineering, Issue 33/3, 2021, Page(s) 04020491, ISSN 0899-1561
Publisher:
American Society of Civil Engineers
DOI:
10.1061/(ASCE)MT.1943-5533.0003604
Author(s):
Estefania Cuenca, Alessandro Mezzena, Liberato Ferrara
Published in:
Construction and Building Materials, Issue 266, 2021, Page(s) 121447, ISSN 0950-0618
Publisher:
Elsevier BV
DOI:
10.1016/j.conbuildmat.2020.121447
Author(s):
Shashank Gupta, Salam Al-Obaidi, Liberato Ferrara
Published in:
Materials, Issue 14/16, 2021, Page(s) 4437, ISSN 1996-1944
Publisher:
MDPI Open Access Publishing
DOI:
10.3390/ma14164437
Author(s):
E.G.Deze; E. Cuenca; A.M.L. Násner; M. Iakovlev; S. Sideri; A. Sapalidis; R.P. Borg; L. Ferrara
Published in:
Materials Today Proceedings, Issue 1, 2022, Page(s) 50-56, ISSN 2214-7853
Publisher:
Elsevier
DOI:
10.1016/j.matpr.2021.09.511
Author(s):
M.Valcuende; J.R. Lliso-Ferrando; J.E. Ramón-Zamora; J. Soto
Published in:
Construction an d Building Materials, Issue 1, 2021, Page(s) 1-10, ISSN 0950-0618
Publisher:
Elsevier BV
DOI:
10.1016/j.conbuildmat.2021.124914
Author(s):
M.C. Caruso, C. Pascale, E.Camacho and L. Ferrara
Published in:
The International Journal of Life Cycle Assessment, Issue 27, 2022, Page(s) 281-300, ISSN 0948-3349
Publisher:
Springer Verlag
DOI:
10.1007/s11367-021-02017-6
Author(s):
Francesco Lo Monte, Liberato Ferrara
Published in:
Materials and Structures, Issue 53/6, 2020, Page(s) 12, ISSN 1359-5997
Publisher:
R I L E M Publications S. A. R. L.
DOI:
10.1617/s11527-020-01576-8
Author(s):
Eduardo J. Mezquida-Alcaraz; Juan Navarro-Gregori; Pedro Serna-Ros
Published in:
Cement and Concrete Composites, 2021, Page(s) 1-14, ISSN 0958-9465
Publisher:
Pergamon Press Ltd.
DOI:
10.1016/j.cemconcomp.2020.103854
Author(s):
Amr Alatawna, Matan Birenboim, Roey Nadiv, Matat Buzaglo, Sivan Peretz-Damari, Alva Peled, Oren Regev, Raghu Sripada
Published in:
Construction and Building Materials, Issue 232, 2020, Page(s) 117141, ISSN 0950-0618
Publisher:
Elsevier BV
DOI:
10.1016/j.conbuildmat.2019.117141
Author(s):
Francesco Lo Monte, Liberato Ferrara
Published in:
Construction and Building Materials, Issue 283, 2021, Page(s) 122579, ISSN 0950-0618
Publisher:
Elsevier BV
DOI:
10.1016/j.conbuildmat.2021.122579
Author(s):
Matan Birenboim; Amr Alatawna; Raghu Sripada; Lior Nahum; Lucas Luciano Cullari; Alva Peled; Oren Regev
Published in:
Materials and Structures, Issue 1, 2021, Page(s) 1-17, ISSN 1359-5997
Publisher:
R I L E M Publications S. A. R. L.
DOI:
10.1617/s11527-021-01789-5
Author(s):
Salam Al-Obaidi, Patrick Bamonte, Francesco Animato, Francesco Lo Monte, Iacopo Mazzantini, Massimo Luchini, Sandra Scalari, Liberato Ferrara
Published in:
Sustainability, Issue 13/17, 2021, Page(s) 9826, ISSN 2071-1050
Publisher:
MDPI Open Access Publishing
DOI:
10.3390/su13179826
Author(s):
Gimenez, M., Alonso, M.C., Menendez, E., Criado, M.
Published in:
Materiales de Construcción, 2021, Page(s) 1-24, ISSN 0465-2746
Publisher:
Instituto de Ciencias de Ia Construccion Eduardo Torroja
DOI:
10.3989/mc.2021.14021
Author(s):
Eduardo J.Mezquida-Alcaraz, JuanNavarro-Gregori, José R.Martí-Vargas, PedroSerna-Ros
Published in:
Case Studies in Construction Materials, 2021, ISSN 2214-5095
Publisher:
Elsevier BV
DOI:
10.1016/j.cscm.2021.e00746
Author(s):
Doostkami, H., Roig-Flores, M., Serna, P.
Published in:
Construction and Building Materials, 2021, ISSN 0950-0618
Publisher:
Elsevier BV
DOI:
10.1016/j.conbuildmat.2021.125168
Author(s):
Ana Martínez-Ibernón, Marta Roig-Flores, Josep Lliso-Ferrando, Eduardo J. Mezquida-Alcaraz, Manuel Valcuende, Pedro Serna
Published in:
Applied Sciences, Issue 10/1, 2020, Page(s) 239, ISSN 2076-3417
Publisher:
MDPI
DOI:
10.3390/app10010239
Author(s):
A. Cibelli, M. Pathirage, G. Cusatis, L. Ferrara, G. di Luzio
Published in:
Engineering Fracture Mechanics, 2022, Page(s) 1-30, ISSN 0013-7944
Publisher:
Pergamon Press Ltd.
DOI:
10.1016/j.engfracmech.2022.108266
Author(s):
Amr Alatawna; Lior Nahum; Raghu Sripada; Matan Birenboim; Oren Regev; Alva Peled
Published in:
Cement and Concrete Composites, Issue 1, 2022, ISSN 0958-9465
Publisher:
Pergamon Press Ltd.
DOI:
10.1016/j.cemconcomp.2022.104534
Author(s):
Estefanía Cuenca, Francesco Lo Monte, Marina Moro, Andrea Schiona, Liberato Ferrara
Published in:
Sustainability, Issue 13/20, 2021, Page(s) 11386, ISSN 2071-1050
Publisher:
MDPI Open Access Publishing
DOI:
10.3390/su132011386
Author(s):
Ruben Paul Borg, Estefania Cuenca, Roberto Garofalo, Fabrizio Schillani, Milena Lozano Nasner, Liberato Ferrara
Published in:
Frontiers in Built Environment, Issue 7, 2021, Page(s) 20, ISSN 2297-3362
Publisher:
Frontiers
DOI:
10.3389/fbuil.2021.648220
Author(s):
Francesco Lo Monte; Eduardo J. Mezquida-Alcaraz; Juan Navarro-Gregori; Pedro Serna; Liberato Ferrara
Published in:
RILEM-fib International Symposium on Fibre Reinforced Concrete BEFIB 2021: Fibre Reinforced Concrete: Improvements and Innovations II, 2022, Page(s) 936-946, ISBN 978-3-030-83719-8
Publisher:
Springer
DOI:
10.1007/978-3-030-83719-8_80
Author(s):
Giovanni di Luzio; Liberato Ferrara; Maria Cruz Alonso y Alonso; Philip Kunz; Viktor Mechtcherine; Christof Schroefl
Published in:
Proceedings Symposium on Concrete Modelling (CONMOD2018), 2018, Page(s) 467-477, ISBN 978-2-35158-216-9
Publisher:
RILEM Pubs
DOI:
10.5281/zenodo.1438229
Author(s):
PEDRO SERNA; Francesco Lo Monte; Eduardo J. Mezquida-Alcaraz; Estefania Cuenca; Viktor Mechtcherine; Michaela Reichardt; Alva Peled; Oren Regev; Ruben P. Borg; Alexej Tretjakov; Dennis Lizunov; Konstantin Sobolev; Stamatina Sideri; Kim Nelson; Enrico Maria Gastaldo Brac; Liberato Ferrara
Published in:
Proceedings of the International Conference on Sustainable Materials, Systems and Structures, Issue 1, 2019, Page(s) 764-771, ISBN 9782-351582176
Publisher:
RILEM
DOI:
10.5281/zenodo.2621369
Author(s):
Ferrara, Liberato; Bamonte, Patrick; Suesta, Cristina; Animato, Francesco; Pascale, Carmine; Tretjakov, Aleksej; Camacho, Esteban; Deegan, Peter; Sideri, Stamatina; Gastaldo, Enrico Maria; Serna, Pedro; Mechtcherine, Viktor; Cruz Alonso, María; Peled, Alva; Paul Borg, Ruben
Published in:
"Proceedings of the IABSE Symposium ""Towards a Resilient Built Environment - Risk and Asset Management""", Issue 1, 2019, Page(s) 174-181, ISBN 978-3-85748-163-5
Publisher:
IABSE
DOI:
10.5281/zenodo.2631157
Author(s):
Cuenca, E., Zaro, A., Ferrara, L.
Published in:
Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, Issue 1, 2019, Page(s) 274-281, ISBN 978-2940-64300-4
Publisher:
International Federation for Structural Concrete
DOI:
10.5281/zenodo.3244306
Author(s):
A. Cibelli, G. di Luzio, L. Ferrara, G. Cusatis, Pathirage, M.
Published in:
Proceedings 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-X, 2019
Publisher:
IA Framcos
Author(s):
Francesco Lo Monte, Gabriele Zago, Marco Cucchi, Liberato Ferrara
Published in:
Rheology and Processing of Construction Materials - RheoCon2 & SCC9, Issue 23, 2020, Page(s) 237-245, ISBN 978-3-030-22565-0
Publisher:
Springer International Publishing
DOI:
10.1007/978-3-030-22566-7_28
Author(s):
Estefanía Cuenca; María Criado; Mercedes Giménez; Enrico Gastaldo Brac; Stamatina Sideri; Alexey Tretjakov; Maria Cruz Alonso; Liberato Ferrara
Published in:
Durable concrete for infrastructure under severe conditions – Smart admixtures, self-responsiveness and nano-additives, Issue 4, 2019, Page(s) 147-151, ISBN 9789-463886383
Publisher:
UGent
DOI:
10.5281/zenodo.3413756
Author(s):
C. Schröfl; A. Peled; O. Regev; R. P. Borg; M. Reichardt; R. Sripada; V. Mechtcherine; P. Deegan; L. Ferrara
Published in:
Durable concrete for infrastructure under severe conditions – Smart admixtures, self-responsiveness and nano-additives, Issue 4, 2019, Page(s) 24-27, ISBN 9789-463886383
Publisher:
UGent
DOI:
10.5281/zenodo.3405253
Author(s):
Alberto Negrini, Marta Roig-Flores, Eduardo J. Mezquida-Alcaraz, Liberato Ferrara, Pedro Serna
Published in:
MATEC Web of Conferences, Issue 289, 2019, Page(s) 01006, ISSN 2261-236X
Publisher:
EDP Sciences
DOI:
10.1051/matecconf/201928901006
Author(s):
Lo Monte, F.; Ferrara, L.
Published in:
Proceedings of the 5th ACI Italy Chapter workshop on the New Boundaries of Structural Concrete 2020, Issue 1, 2019, Page(s) 45-54, ISBN 9788-898720224
Publisher:
IMREADY
DOI:
10.5281/zenodo.3938483
Author(s):
Cuenca, E.; Mezzena, A.; Ferrara, L.
Published in:
Proceedings of the 5th ACI Italy Chapter workshop on the New Boundaries of Structural Concrete, Issue 1, 2019, Page(s) 65-74, ISBN 9788-898720224
Publisher:
IMREADY
DOI:
10.5281/zenodo.3938522
Author(s):
M. Criado; M. Gimenez; E. Menéndez; M.C. Alonso
Published in:
Issue 2, 2020, Page(s) 11
Publisher:
University of Sheffield
DOI:
10.5281/zenodo.4289921
Author(s):
E. Cuenca Asensio; Marta Roig-Flores; R. Garofalo; M. Lozano-Nasner; C. Ruiz-Munoz; F. Schillani; Ruben Paul Borg; Liberato Ferrara; Pedro Serna
Published in:
RILEM-fib International Symposium on Fibre Reinforced Concrete BEFIB 2021: Fibre Reinforced Concrete: Improvements and Innovations II, 2022, Page(s) 947-957, ISBN 9783030837198
Publisher:
Springer
DOI:
10.1007/978-3-030-83719-8_81
Author(s):
Hesam Doostkami, Marta Roig-Flores, Alberto Negrini, Eduardo J. Mezquida-Alcaraz, Pedro Serna
Published in:
Fibre Reinforced Concrete: Improvements and Innovations - RILEM-fib International Symposium on FRC (BEFIB) in 2020, Issue 30, 2021, Page(s) 489-499, ISBN 978-3-030-58481-8
Publisher:
Springer International Publishing
DOI:
10.1007/978-3-030-58482-5_45
Author(s):
M. C. Caruso, C. Pascale, E. Camacho, S. Scalari, F. Animato, M. C. Alonso, M. Gimenez, L. Ferrara
Published in:
Concrete Durability and Service Life Planning - Proceedings of ConcreteLife’20, Issue 26, 2020, Page(s) 121-125, ISBN 978-3-030-43331-4
Publisher:
Springer International Publishing
DOI:
10.1007/978-3-030-43332-1_24
Author(s):
E. Cuenca, E. M. Gastaldo Brac, S. Rigamonti, V. Violante, L. Ferrara
Published in:
Concrete Durability and Service Life Planning - Proceedings of ConcreteLife’20, Issue 26, 2020, Page(s) 141-147, ISBN 978-3-030-43331-4
Publisher:
Springer International Publishing
DOI:
10.1007/978-3-030-43332-1_28
Searching for OpenAIRE data...
There was an error trying to search data from OpenAIRE
No results available