Periodic Reporting for period 1 - M-TRAIT (Modelling Tree Response to Aridity Increase with Traits)
Periodo di rendicontazione: 2018-02-01 al 2020-01-31
Land surface models (LSMs) simulate the biophysical and biogeochemical processes of the interaction between the terrestrial biosphere and the atmosphere. They are a key component of the so-called ‘Earth systems models’ used for recommendations by the intergovernmental panel for climate change, and where they are expected to tackle large-scale questions related to land-atmosphere interactions. The predictive power of LSMs is hampered by their over-parameterization , that implies that a good result can be obtained for the wrong reasons. Indeed, most physiological processes are represented by semi-empirical equations, with parameters calibrated for specific sites and conditions that do not always have ecological meaning and that might not necessarily hold under future climate. For LSMs to be able to simulate forest response to droughts outside their calibration range requires the implementation of the main physiological characteristics the so-called ‘traits’ that vary with environmental conditions , and drive trees’ response to environmental changes.
This requirement leads to the overall challenge of this fellowship, to advance the representation of drought- related physiological processes in LSMs using the cutting-edge multidisciplinary approach of trait modelling. The aim is to enhance society’s understanding of future impacts of drought on European forests.
Regarding the introduction of a traits-based approach into a Land Surface Model, a model configuration was setup to constrain the model parameters with 4 measured physiological traits identified as the most likely to be implemented in models for the availability of the data and their physiological role. Simulations were run over 18 sites in Catalunya for which traits measurements were available. The simulations had to stop due to a change in the model version after flaws were identified in the previous version. This work is to be continued with the most recent and up-to-date version of the model.
Due to the delay in objective 2, the objective to simulate the physiological response of forests to more frequent droughts in the future was reformulated as to evaluate the forest management that would be most efficient in mitigating climate change. Simulations were run over all of Europe with a range of forest management scenarios and their climate impact evaluated.
Finally, due to the changes operated in objectives 2 and 3,objective 4 was also updated as an exploration of the determinants of the substitution potential of the wood sector. A group of researcher from different disciplines was gathered by the ER and the knowledge gaps were evidenced and listed; This work resulted in the writing of funding proposals and a publication that is still to be finalized.