Objetivo
Graphene-based materials have emerged as the ideal candidates to substitute other conventional materials currently used as electrodes in energy storage devices (most of them currently based on graphite or other forms of carbon). The reason is
basically the fact that graphene, which is a recently discovered form of carbon awarded with the Nobel Prize in 2010, is the only material known that gathers together the extraordinary properties of great mechanical and tensile strength, the largest surface area described for any other material, a high chemical stability and superior thermal and electrical conductivities.
The combination of these extraordinary properties makes of graphene a unique material. However, what really makes of graphene a huge promise under a macroeconomic perspective is that graphene in essence is carbon; one of the most
abundant elements in earth. This is why graphene has attracted a huge social, economic and industrial interest over the last years and this is why some sources predict that graphene will become the responsible of the next technological revolution.
However, the current methods for production of graphene-based materials require from multistep chemical transformations, making their industrial production completely unfeasible and very expensive. Therefore, the use of these materials in real energy storage devices is prevented nowadays.
Gnanomat S.L has patented an environmental friendly, safe (no need for hazardous or toxic chemical reagents or solvent) straightforward method for the production of graphene-based materials in a single step procedure, which will make feasible their low cost industrial production. Thanks to the unique features of our technology, it has the potential to become the gold-standard method for industrial production of graphene based materials, offering a solution to overcome the critical barriers in actually exploiting the benefits of these materials in energy storage devices.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- natural scienceschemical scienceselectrochemistryelectric batteries
- natural sciencesphysical scienceselectromagnetism and electronics
- engineering and technologynanotechnologynano-materialstwo-dimensional nanostructuresgraphene
- natural scienceschemical sciencesinorganic chemistryinorganic compounds
- social sciencespolitical sciencespolitical transitionsrevolutions
Programa(s)
- H2020-EU.2.1.2. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies Main Programme
- H2020-EU.2.1.5. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing
- H2020-EU.2.1.3. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials
- H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-SMEINST-2-2016-2017
Régimen de financiación
SME-2 - SME instrument phase 2Coordinador
28049 Madrid
España
Organización definida por ella misma como pequeña y mediana empresa (pyme) en el momento de la firma del acuerdo de subvención.