Leistungen
Report on M23 Proof-of-concept demonstration of magnetomechanical inertial sensor M24 Theoretical investigation of magnetomechanical architectures for quantum information processing (e.g. quantum memory/transduction) M27 Assessment of application potential of the magnetomechanical sensing platform and roadmap for enhancing its technological readiness level (>TRL 4) M28 Proposals for fundamental tests at the interface between quantum physics and gravity M29 Demonstrate matter-wave interference with quantum magnetomechanical devices Involving T5.1, 5.2, 5.4, 5.5, 5.6
Mid-Term Report 2 on WP5 milestones: Towards sensors, QIP architectures, fundamental testsReport on M21 Proposals for quantum enabled force sensing for ultra-small forces (surface forces, gravity, Casimir forces) Towards M23 Proof-of-concept demonstration of magnetomechanical inertial sensor Towards M24 Theoretical investigation of magnetomechanical architectures for quantum information processing (e.g. quantum memory/transduction) Towards M28 Proposals for fundamental tests at the interface between quantum physics and gravity involving Tasks 5.1, 5.3, 5.4, 5.5
Final Report on WP3 milestones: strong coupling to a cantileverReport on M13 Modelling, fabrication, characterisation of on-chip inductively coupled superconducting circuits (LC resonator, qubits) M14 Demonstrate magnetomechanical coupling to superconducting circuit M15 Observation of ultra-strong magnetomechanical coupling to a superconducting cantilever And other Milestones as necessary Involving tasks 3.6, 3.7
Mid-Term Report 2 on WP4 milestones: Ground state cooling, single-photon couplingReport on M18 Observation of magneto mechanical ground state cooling of a superconducting micro-object M19 Demonstrate long coherence times (>ms) for levitated superconducting micro-objects M20 Observation of strong coupling between single micro-wave photons and a superconducting cantilever Towards M22 Demonstrate coherent wavepacket manipulation through dynamic control of levitation potential Towards M26 Demonstrate preparation/validation of non-Gaussian mechanical states And other Milestones as necessary Involving tasks 2.2, 2.3, 2.4, 2.5, 2.6
Final Report on WP4 milestones: Non-Gaussian mechanical statesReport on M22 Demonstrate coherent wavepacket manipulation through dynamic control of levitation potential M26 Demonstrate preparation/validation of non-Gaussian mechanical states And other Milestones as necessary Involving task 4.6
Technical Action Check Meeting 1Agenda and list of presentations delivered delivered during Technical Meeting Action Check Meeting
Final technical review 2 Meeting documentsAgenda and list of presentations delivered during First Scientific Action Check Meeting 2
Dissemination and Exploitation PlanThis deliverable will include the Consortium plan to allow third parties to access, exploit, reproduce and disseminate the data generate during the project (free of charge). These dissemination activities will be performed during the first and second reporting period and after the end of the project. It will also include an interim version for the exploitation plan (Month 36).
Industry Workshop Report: ‘Cryogenic Vibration Isolation for Science and Industry’Report/Minutes from an Industry Workshop: ‘Cryogenic Vibration Isolation for Science and Industry’ held jointly with Industry Partner Attocube
Final Report on WP2 milestones: readout of ultra-stable levitationReport on M11 Demonstrate low vibration levels (<10-15m/Hz0.5) at trap frequency M12 Demonstrate readout of ultra-stable magnetic levitation (mK temps) And other Milestones as necessary involving tasks 2.5, 2.6
First Scientific Action Check Meeting 1Agenda and list of presentations delivered during First Scientific Action Check Meeting 1
Mid-Term Report on WP2 milestones: Fabrication of traps and micro-objectsReport on M2 Modelling, fabrication, characterisation of cryogenic, superconducting micro-trap architectures M3 Fabrication, characterization of superconducting nano/micro-objects M6 Magnetic levitation of a single, superconducting micro-object M7 Modelling and design of low-vibration cryogenic platform for mK temperatures operation Towards M11 Demonstrate low vibration levels (<10^-15m/Hz^0.5) at trap frequency Towards M12 Demonstrate readout of ultra-stable magnetic levitation (mK temps) Involving tasks 2.1, 2.2, 2.3, 2.4, 2.5, 2.6
Mid-Term Report on WP3 milestones: Fabrication of cantilevers and high-QReport on M4 Modelling, fabrication, characterisation of superconducting cantilever M8 Magnetic-flux based detector for mechanical readout M9 Demonstration of ultra-high-Q magnetomechanical motion (Q ~ 1010) Towards M13 Modelling, fabrication, characterisation of on-chip inductively coupled superconducting circuits (LC resonator, qubits) Towards M14 Demonstrate magnetomechanical coupling to superconducting circuit Towards M15 Observation of ultra-strong magnetomechanical coupling to a superconducting cantilever involving tasks 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7
Mid-Term Report 1 on WP5 milestones: Towards proposals for quantum enabled force sensingTowards M21 Proposals for quantum enabled force sensing for ultra-small forces (surface forces, gravity, Casimir forces) involving task 5.3
Industry Workshop Report: ‘Status & Challenges of Inertial Sensing in Industrial Applications’Report/Minutes on Industry Workshop: ‘Status & Challenges of Inertial Sensing in Industrial Applications’ held jointly with Industry Partner Airbus
Mid-Term Report 1 on WP4 milestones: Theory for potential engineeringReport on M10 Development of a theoretical toolbox for engineering the levitation potential of superconducting micro-objects involving task 4.1
Report detailing consortium Data Management Plan finished, detailing what data the consortium will generate, whether and how it will be exploited or made accessible for verification and re-use, and how it will be curated and preserved. This will comprise a database of published measurements, a database of laboratory equipment used during measurements, a list of expertise in the different institutions used in the project, and a compendium of all project results and reports.
Creation of the MaQSens professional project website to serve as the information point for the project
Veröffentlichungen
Autoren:
Philip Schmidt, Mohammad T. Amawi, Stefan Pogorzalek, Frank Deppe, Achim Marx, Rudolf Gross, Hans Huebl
Veröffentlicht in:
Communications Physics, Ausgabe 3/1, 2020, ISSN 2399-3650
Herausgeber:
SpingerNature
DOI:
10.1038/s42005-020-00501-3
Autoren:
Martí Gutierrez Latorre, Joachim Hofer, Matthias Rudolph, Witlef Wieczorek
Veröffentlicht in:
Superconductor Science and Technology, Ausgabe 33/10, 2020, Seite(n) 105002, ISSN 0953-2048
Herausgeber:
Institute of Physics Publishing
DOI:
10.1088/1361-6668/aba6e1
Autoren:
Carles Navau, Stefan Minniberger, Michael Trupke, Alvaro Sanchez
Veröffentlicht in:
Physical Review B, Ausgabe 103/17, 2021, ISSN 2469-9950
Herausgeber:
American Physical Society
DOI:
10.1103/physrevb.103.174436
Autoren:
D. Zoepfl, M. L. Juan, C. M. F. Schneider, G. Kirchmair
Veröffentlicht in:
Physical Review Letters, Ausgabe 125/2, 2020, ISSN 0031-9007
Herausgeber:
American Physical Society
DOI:
10.1103/physrevlett.125.023601
Autoren:
Rosa Mach-Batlle, Albert Parra, Jordi Prat-Camps, Sergi Laut, Carles Navau, Alvaro Sanchez
Veröffentlicht in:
Physical Review B, Ausgabe 96/9, 2017, ISSN 2469-9950
Herausgeber:
American Physical Society
DOI:
10.1103/physrevb.96.094422
Autoren:
Philip Schmidt, Daniel Schwienbacher, Matthias Pernpeintner, Friedrich Wulschner, Frank Deppe, Achim Marx, Rudolf Gross, Hans Huebl
Veröffentlicht in:
Applied Physics Letters, Ausgabe 113/15, 2018, Seite(n) 152601, ISSN 0003-6951
Herausgeber:
American Institute of Physics
DOI:
10.1063/1.5052414
Autoren:
Rosa Mach-Batlle, Albert Parra, Sergi Laut, Nuria Del-Valle, Carles Navau, Alvaro Sanchez
Veröffentlicht in:
Physical Review Applied, Ausgabe 9/3, 2018, ISSN 2331-7019
Herausgeber:
American Physical Society
DOI:
10.1103/PhysRevApplied.9.034007
Autoren:
P. R. Muppalla, O. Gargiulo, S. I. Mirzaei, B. Prasanna Venkatesh, M. L. Juan, L. Grünhaupt, I. M. Pop, G. Kirchmair
Veröffentlicht in:
Physical Review B, Ausgabe 97/2, 2018, ISSN 2469-9950
Herausgeber:
American Physical Society
DOI:
10.1103/physrevb.97.024518
Autoren:
J. Prat-Camps, C. Teo, C. C. Rusconi, W. Wieczorek, O. Romero-Isart
Veröffentlicht in:
Physical Review Applied, Ausgabe 8/3, 2017, Seite(n) 034002, ISSN 2331-7019
Herausgeber:
APS
DOI:
10.1103/physrevapplied.8.034002
Autoren:
J Hofer, M Aspelmeyer
Veröffentlicht in:
Physica Scripta, Ausgabe 94/12, 2019, Seite(n) 125508, ISSN 0031-8949
Herausgeber:
Royal Swedish Academy of Sciences
DOI:
10.1088/1402-4896/ab0c44
Autoren:
Talitha Weiss, Oriol Romero-Isart
Veröffentlicht in:
Physical Review Research, Ausgabe 1/3, 2019, Seite(n) 033157, ISSN 2643-1564
Herausgeber:
APS
DOI:
10.1103/physrevresearch.1.033157
Autoren:
Sharafiev, Aleksei; Juan, Mathieu L.; Gargiulo, Oscar; Zanner, Maximilian; Wögerer, Stephanie; García-Ripoll, Juan José; Kirchmair, Gerhard
Veröffentlicht in:
arxiv.org, 2020
Herausgeber:
arxiv.org
Autoren:
Schwienbacher, Daniel; Luschmann, Thomas; Gross, Rudolf; Huebl, Hans
Veröffentlicht in:
arxiv.org, Ausgabe 1, 2020
Herausgeber:
arxiv.org
Autoren:
T. Weiss, M. Roda-Llordes, E. Torrontegui, M. Aspelmeyer, O. Romero-Isart
Veröffentlicht in:
arxiv.org, 2020
Autoren:
Navau, Carles; Minniberger, Stefan; Trupke, Michael; Sanchez, Alvaro
Veröffentlicht in:
arxiv.org, 2020
Herausgeber:
arxiv.org
Suche nach OpenAIRE-Daten ...
Bei der Suche nach OpenAIRE-Daten ist ein Fehler aufgetreten
Es liegen keine Ergebnisse vor