Descripción del proyecto
Una célula fotoelectrocatalítica sostenible produce combustibles y oxígeno a partir de agua y CO2
Las hojas son las superficies fotosintetizadoras de las plantas, que transforman la energía luminosa en energía química. En el proyecto A-LEAF, financiado con fondos europeos, se prevé desarrollar una hoja artificial, una célula fotoelectrocatalítica que pueda convertir de forma directa el agua y el CO2 en combustibles o productos químicos básicos y oxígeno. Su equipo identificará catalizadores metálicos y de óxidos metálicos óptimos para la oxidación del agua y la reducción del CO2 y, además, desarrollará nanoestructuras catalíticas depositadas sobre semiconductores para los fotoelectrodos. La combinación, optimizada con métodos informáticos, se integrará en un prototipo de célula fotoelectrocatalítica, que incluirá membranas de intercambio iónico y electrodos de difusión de gases para la separación de productos. El objetivo teórico es lograr una eficiencia de conversión de la energía solar en combustible superior al 10 %.
Objetivo
A novel concept for a photo-electro-catalytic (PEC) cell able to directly convert water and CO2 into fuels and chemicals (CO2 reduction) and oxygen (water oxidation) using exclusively solar energy will be designed, built, validated, and optimized. The cell will be constructed from cheap multifunction photo-electrodes able to transform sun irradiation into an electrochemical potential difference (expected efficiency > 12%); ultra-thin layers and nanoparticles of metal or metal oxide catalysts for both half-cell reactions (expected efficiency > 90%); and stateof- the-art membrane technology for gas/liquid/products separation to match a theoretical target solar to fuels efficiency above 10%. All parts will be assembled to maximize performance in pH > 7 solution and moderate temperatures (50-80 ºC) as to take advantage of the high stability and favorable kinetics of constituent materials in these conditions. Achieving this goal we will improve the state-of-the-art of all components for the sake of cell integration:
1) Surface sciences: metal and metal oxide catalysts (crystals or nanostructures grown on metals or silicon) will be characterized for water oxidation and CO2 reduction through atomically resolved experiments (scanning probe microscopy) and spatially-averaged surface techniques including surface analysis before, after and in operando electrochemical reactions. Activity and performance will be correlated to composition, thickness, structure and support as to determine the optimum parameters for device integration.
2) Photoelectrodes: This unique surface knowledge will be transferred to the processing of catalytic nanostructures deposited on semiconductors through different methods to match the surface chemistry results through viable up-scaling processes. Multiple thermodynamic and kinetic techniques will be used to characterize and optimize the performance of the interfaces with spectroscopy and photo-electrochemistry tools to identify best matching between light absorbers and chemical catalysts along optimum working conditions (pH, temperature, pressure).
3) Modeling: Materials, catalysts and processes will be modeled with computational methods as a pivotal tool to understand and to bring photo-catalytic-electrodes to their theoretical limits in terms of performance.
The selected optimum materials and environmental conditions as defined from these parallel studies will be integrated into a PEC cell prototype. This design will include ion exchange membranes and gas diffusion electrodes for product separation. Performance will be validated in real working conditions under sun irradiation to assess the technological and industrial relevance of our A-LEAF cell.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energy
- natural scienceschemical sciencescatalysisphotocatalysis
- natural scienceschemical sciencesinorganic chemistryinorganic compounds
- natural scienceschemical sciencescatalysiselectrocatalysis
- engineering and technologychemical engineeringseparation technologies
Palabras clave
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
FETPROACT-2016
Régimen de financiación
RIA - Research and Innovation actionCoordinador
43007 Tarragona
España