Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Mechanical control of biological function

Objectif

Mechanical forces transmitted through specific molecular bonds drive biological function, and their understanding and control hold an uncharted potential in oncology, regenerative medicine and biomaterial design. However, this potential has not been realised, because it requires developing and integrating disparate technologies to measure and manipulate mechanical and adhesive properties from the nanometre to the metre scale. We propose to address this challenge by building an interdisciplinary research community with the aim of understanding and controlling cellular mechanics from the molecular to the organism scale. At the nanometric molecular level, we will develop cellular microenvironments enabled by peptidomimetics of cell-cell and cell-matrix ligands, with defined mechanical and adhesive properties that we will dynamically control in time and space trough photo-activation. The properties under force of the molecular bonds involved will be characterized using single-molecule atomic force microscopy and magnetic tweezers. At the cell-to-organ scale, we will combine controlled microenvironments and interfering strategies with the development of techniques to measure and control mechanical forces and adhesion in cells and tissues, and to evaluate their biological response. At the organism scale, we will establish how cellular mechanics can be controlled, by targeting specific adhesive interactions, to impair or abrogate breast tumour progression in a mouse model. At all stages and scales of the project, we will integrate experimental data with multi-scale computational modelling to establish the rules driving biological response to mechanics and adhesion. With this approach, we aim to develop specific therapeutic approaches beyond the current paradigm in breast cancer treatment. Beyond breast cancer, the general principles targeted by our technology will have high applicability in oncology, regenerative medicine and biomaterials.

Champ scientifique

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.

Appel à propositions

H2020-FETPROACT-2016-2017

Voir d’autres projets de cet appel

Sous appel

FETPROACT-2016

Coordinateur

FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYA
Contribution nette de l'UE
€ 1 952 419,59
Adresse
CARRER BALDIRI REIXAC PLANTA 2A 10-12
08028 Barcelona
Espagne

Voir sur la carte

Région
Este Cataluña Barcelona
Type d’activité
Research Organisations
Liens
Coût total
€ 1 952 419,59

Participants (6)