Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Future Directions of Production Planning and Optimized Energy- and Process Industries

Descripción del proyecto

Ampliar el uso del aprendizaje automático para lograr la eficiencia energética

En la batalla contra el cambio climático, resulta esencial que disminuyamos el consumo de recursos y energía a la vez que aumentamos la eficiencia general. El aprendizaje automático es una herramienta prometedora para alcanzar este objetivo y ya ha realizado contribuciones significativas en diversos sectores e industrias, lo cual ha generado avances vitales en la automatización y la eficiencia. El equipo del proyecto FUDIPO, financiado con fondos europeos, pretende extender la aplicación de prácticas de aprendizaje automático a todas las industrias europeas con el fin de mejorar drásticamente la eficiencia energética y de los recursos. Para lograrlo, en el proyecto se desarrollará una plataforma de optimización, tres demostradores de sistemas extensivos a todo el emplazamiento y dos demostradores tecnológicos a pequeña escala. Asimismo, gracias a la recopilación de datos y a las simulaciones se pueden conseguir mejoras sustanciales.

Objetivo

Machine learning have revolutionized the way we use computers and is a key technology in the analysis of large data sets. The FUDIPO project will integrate machine learning functions on a wide scale into several critical process industries, showcasing radical improvements in energy and resource efficiency and increasing the competitiveness of European industry. The project will develop three larger site-wide system demonstrators as well as two small-scale technology demonstrators. For this aim, FUDIPO brings together five end-user industries within the pulp and paper, refinery and power production sectors, one automation industry (LE), two research institutes and one university. A direct output is a set of tools for diagnostics, data reconciliation, and decision support, production planning and process optimization including model-based control. The approach is to construct physical process models, which then are continuously adapted using “good data” while “bad data” is used for fault diagnostics. After learning, classification of data can be automated. Further, statistical models are built from measurements with several new types of sensors combined with standard process sensors. Operators and process engineers are interacting with the system to both learn and to improve the system performance. There are three new sensors included (TOM, FOM and RF) and new functionality of one (NIR). The platform will have an open platform as the base functionality, as well as more advanced functions as add-ons. The base platform can be linked to major automation platforms and data bases. The model library also is used to evaluate impact of process modifications. By using well proven simulation models with new components and connect to the process optimization system developed we can get a good picture of the actual operations of the modified plant, and hereby get concurrent engineering – process design together with development of process automation.

Convocatoria de propuestas

H2020-IND-CE-2016-17

Consulte otros proyectos de esta convocatoria

Convocatoria de subcontratación

H2020-SPIRE-2016

Régimen de financiación

RIA - Research and Innovation action

Coordinador

MALARDALENS UNIVERSITET
Aportación neta de la UEn
€ 1 135 158,75
Dirección
UNIVERSITETSPLAN 1
722 20 VASTERAAS
Suecia

Ver en el mapa

Región
Östra Sverige Östra Mellansverige Västmanlands län
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 135 158,75

Participantes (12)