Objective
CANOBLE aims to develop and validate innovative engineering methods and tools up to TRL5 to study, in design phase, the noise generated inside the cockpit and cabin by the external turbulent boundary layer.
A unique experimental and numerical data base will be created for the benefit of the European noise community and the European aeronautic industry.
A full scale mock-up of a cockpit including a cabin section will be manufactured, instrumented, and tested in a large aeroacoustics Wind Tunnel. To bypass the TBL measurement limitation, an innovative ultra-thin pressure surface array instrumentation will be developed. The array will allow for an accurate measurement thanks to a high density of pressure sensors and the possibility to analysis the acoustic and the aerodynamic contributions of the excitation using a signal separation strategy. In parallel to the test activities, a complete aero/vibro-acoustic modelling strategy will be implemented including a TBL wall-pressure fluctuations model including adverse pressure gradients with the possibility to account for detailed TBL indicators extracted from steady-state computational fluid dynamics analysis. Finally a virtual prototype will be developed, tuned and compared with the WTT results and extended to flight cruising conditions to deliver recommendations for design purpose to the Topic Manager.
CANOBLE will be executed by three organisations and will last 36 months.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologymechanical engineeringvehicle engineeringaerospace engineeringaircraft
- engineering and technologymechanical engineeringvehicle engineeringautomotive engineering
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencesphysical sciencesclassical mechanicsfluid mechanicsfluid dynamicscomputational fluid dynamics
- engineering and technologymechanical engineeringvehicle engineeringaerospace engineeringaeronautical engineering
Programme(s)
Funding Scheme
CS2-RIA - Research and Innovation actionCoordinator
69131 Ecully
France
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.