Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Evolving interactions in microbial communities

Objectif

Microbes play an important role in various aspects of our lives, from our own health to the health of our environment. In almost all of their natural habitats, microbes live in dense communities composed of different strains and species that interact with each other. As these microbes evolve, so do the interactions between them, which alters the functioning of the community as a whole.

In this project, I propose to develop theoretical and experimental tools to study and control evolving interactions between cells and species living in microbial ecosystems. This will involve three main research objectives: first, we will couple theory and experiments to disentangle and characterise the social interactions between five bacterial species that make up an ecosystem used to degrade pollutants. Our second objective will be to use this knowledge to control this same ecosystem, by directing it toward increased productivity and stability. Finally, our third objective will be to “breed” novel communities from scratch using experimental evolution to promote cooperative interactions between community members and thereby increase productivity.

This interdisciplinary and ambitious research will allow us to improve existing methods in pollution degradation, and to design new microbial communities for this and other purposes. More generally, our model system will provide an in-depth conceptual understanding of microbial ecosystems and their evolution, and the tools to investigate more complex microbial communities. My ultimate vision is to possess the technology to use microbial communities to degrade waste, generate efficient biofuels, and design customised treatments for intestinal diseases. This project promises to create the foundations needed to develop this technology, and open many exciting avenues for future research.

Champ scientifique

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.

Régime de financement

ERC-STG - Starting Grant

Institution d’accueil

UNIVERSITE DE LAUSANNE
Contribution nette de l'UE
€ 1 498 875,00
Adresse
QUARTIER UNIL CENTRE - BATIMENT UNICENTRE
1015 LAUSANNE
Suisse

Voir sur la carte

Région
Schweiz/Suisse/Svizzera Région lémanique Vaud
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 498 875,00

Bénéficiaires (1)