Objetivo
Following the discovery of a Higgs boson with a mass of about 125 GeV,
a detailed set of property measurements has confirmed that it plays a
central role in the spontaneous breaking of the electroweak symmetry.
Nevertheless, its role in the generation of fermion mass, in
particular of the first and second generation, is still unclear. In
the Standard Model (SM) this is implemented in an ad hoc manner through
Yukawa interactions, and many beyond-the-SM theories offer rich
phenomenology and exciting prospects for the discovery of New Physics in this sector.
This project will attack - for the first time - in a
systematic and comprehensive way the experimentally most unconstrained
sector of the SM: the couplings of the light-quarks (up, down, charm
and strange) to the Higgs boson, including possible flavour-violating
interactions. The rare exclusive Higgs boson decays to a
meson and a photon or Z boson, which is a novel and unique approach, will be searched for with the ATLAS
detector at the CERN Large Hadron Collider (LHC). At the same time,
an extensive set of measurements of analogous rare exclusive decays of
the W and Z bosons will be performed, further enhancing the scientific
value of the proposed research programme.
The expected branching ratio sensitivity of 10^{-6} for the Higgs
boson decays, and 10^{-9} for the W and Z boson decays will probe
viable New Physics models, and in several cases will reach and surpass the
SM predictions. This project will lead to a profound extension
of the ATLAS and LHC physics output, going beyond what was previously
considered possible. It will open a new line of research in the Higgs
sector, providing relevant input to many different areas of frontier
research, including particle cosmology and planning for possible
future particle physics facilities.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- natural sciencesphysical sciencestheoretical physicsparticle physicsparticle accelerator
- natural sciencesphysical sciencestheoretical physicsparticle physicsfermions
- natural sciencesphysical sciencestheoretical physicsparticle physicsquarks
- natural sciencesphysical sciencestheoretical physicsparticle physicshiggs bosons
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Palabras clave
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
B15 2TT Birmingham
Reino Unido