Objetivo
The COSMICC consortium gathers key industrial and research partners with world-leading positions in the fields of Silicon photonics, CMOS electronics, Printed Circuit Board-Packaging, Optical transceivers and Data-Centers around a strong vision: mass commercialization of Si-photonics-based transceivers is possible starting in 2019 by enhancing the existing photonic integration platform of one of the partners, STMicroelectronics.
COSMICC will develop optical transceivers that will be packaged on-board. Combining CMOS electronics and Si-photonics with innovative-high-throughput fiber-attachment techniques, the developed solutions are scalable to meet the future data-transmission requirements in data-centers and Super computing systems. With performances improved by an order of magnitude as compared with current VCSELs transceivers, COSMICC developed technology will answer tremendous market needs with a target cost per bit that the traditional WDM transceivers cannot meet. The early setting up of a new value chain will enable exploitation of the developed technologies.
In a first high reward step-modification of the fabrication platform, COSMICC consortium will achieve mid-board optical transceivers in the [2Tbit/s -2pJ/bit- 0.2€ per Gbit/s]-class with ~200Gbit/s per fiber: the introduction of one process brick (SiN layer) in the photonic process will enable low-cost packaging techniques (up to 2x12 fiber channels) and practical coarse WDM implementation (4 wavelengths with no temperature-control requirements). The built demonstrators will be tested in lab and field environments. In compliancy with the enhanced-fabrication platform, lasers will be developed by heterogeneous integration of III-V material, targeting improved temperature behavior, and doubled-bit-rate payback.
A second step-modification of the fabrication platform will consist in evaluating a disruptive process that enables SiGe layers with tunable Si-composition for achieving micrometer-scale devices.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
Programa(s)
Tema(s)
Régimen de financiación
RIA - Research and Innovation actionCoordinador
75015 PARIS 15
Francia