Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Innovative Modeling Approaches for Production Systems to raise validatable efficiency

Risultati finali

Pubblicazioni

A flexible architecture for data mining from heterogeneous data sources in automated production systems

Autori: Emanuel Trunzer, Iris Kirchen, Jens Folmer, Gennadiy Koltun, Birgit Vogel-Heuser
Pubblicato in: 2017 IEEE International Conference on Industrial Technology (ICIT), Numero 22-25 March 2017, 2017, Pagina/e 1106-1111, ISBN 978-1-5090-5320-9
Editore: IEEE
DOI: 10.1109/ICIT.2017.7915517

Making Implicit Knowledge Explicit – Acquisition of Plant Staff’s Mental Models as a Basis for Developing a Decision Support System

Autori: Dorothea Pantförder, Julia Schaupp, Birgit Vogel-Heuser
Pubblicato in: HCI International 2017 – Posters' Extended Abstracts, Numero Vol. 713, 2017, Pagina/e 358-365, ISBN 978-3-319-58749-3
Editore: Springer International Publishing
DOI: 10.1007/978-3-319-58750-9_50

Detection of regime switching points in non-stationary sequences using stochastic learning based weak estimation method

Autori: Ezdin Aslanci, Kutalmis Coskun, Peter Schuller, Borahan Tumer
Pubblicato in: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), Numero 24-26 July 2017, 2017, Pagina/e 787-792, ISBN 978-1-5386-0837-1
Editore: IEEE
DOI: 10.1109/INDIN.2017.8104873

Unsupervised mode detection in cyber-physical systems using variable order Markov models

Autori: Bans Gun Surmeli, Feyza Eksen, Bilal Dinc, Peter Schuller, Borahan Tumer
Pubblicato in: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), Numero 24-26 July 2017, 2017, Pagina/e 841-846, ISBN 978-1-5386-0837-1
Editore: IEEE
DOI: 10.1109/INDIN.2017.8104881

LSTM for Model-Based Anomaly Detection in Cyber-Physical Systems

Autori: Benedikt Eiteneuer; Oliver Niggemann
Pubblicato in: DX18 29th International Workshop on Principles of Diagnostics, Numero 1, 2018
Editore: DX
DOI: 10.5281/zenodo.1409641

Using self-organizing maps to learn hybrid timed automata in absence of discrete events

Autori: Alexander von Birgelen, Oliver Niggemann
Pubblicato in: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Numero 12-15 September 2017, 2017, Pagina/e 1-8, ISBN 978-1-5090-6505-9
Editore: IEEE
DOI: 10.1109/ETFA.2017.8247695

Simulation and optimisation of production lines in the framework of the IMPROVE project

Autori: Claudio Santo Longo, Cesare Fantuzzi
Pubblicato in: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2017, Pagina/e 1-8, ISBN 978-1-5090-6505-9
Editore: IEEE
DOI: 10.1109/ETFA.2017.8247582

Defining and validating similarity measures for industrial alarm flood analysis

Autori: Marta Fullen, Peter Schuller, Oliver Niggemann
Pubblicato in: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), Numero 24-26 July 2017, 2017, Pagina/e 781-786, ISBN 978-1-5386-0837-1
Editore: IEEE
DOI: 10.1109/INDIN.2017.8104872

A Survey of Internet of Things and Big Data Integrated Solutions for Industrie 4.0

Autori: Khaled Al-Gumaei, Kornelia Schuba, Andrej Friesen, Sascha Heymann, Carsten Pieper, Florian Pethig, and Sebastian Schriegel
Pubblicato in: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation, Numero 1536098400, 2018
Editore: IEEE
DOI: 10.5281/zenodo.1446427

Applications of non-monotonic reasoning to automotive product configuration using answer set programming

Autori: Eray Gençay, Peter Schüller, Esra Erdem
Pubblicato in: Journal of Intelligent Manufacturing, 2017, Pagina/e 1-16, ISSN 0956-5515
Editore: Kluwer Academic Publishers
DOI: 10.1007/s10845-017-1333-3

IMPROVE - Innovative Modelling Approaches for Production Systems to Raise Validatable Efficiency - Intelligent Methods for the Factory of the Future

Autori: Oliver Niggemann, Peter Schüller
Pubblicato in: Technologien für die intelligente Automation, 2018, ISBN 978-3-662-57805-6
Editore: Springer Berlin Heidelberg
DOI: 10.1007/978-3-662-57805-6

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile