Projektbeschreibung
Innovatives nanoporöses Material ebnet den Weg für Hochleistungs-Spintronik
Das EU-finanzierte Projekt SPIN-PORICS zielt auf die Revolutionierung von Spintronik-Anwendungen durch den Einsatz speziell entwickelter nanoporöser Materialien ab, um die Energieeffizienz zu verbessern. Der Ersatz des elektrischen Stroms durch ein elektrisches Feld könnte zur Senkung des Stromverbrauchs beitragen, da die Wärmeabgabe minimiert und belastungsbedingte Probleme umgangen werden. Solche Probleme treten typischerweise bei magnetischen Speichern und magneto-elektronischen Geräten auf. Mithilfe der Spannung werden die magnetischen Eigenschaften des neuen Komposit-Nanomaterials bei Raumtemperatur eingestellt. Das Material könnte für die elektrisch unterstützte magnetische Aufzeichnung, das spannungsgesteuerte Schalten von magnetischen Direktzugriffsspeichern und Spin-Feldeffekttransistoren verwendet werden.
Ziel
This Project aims to integrate engineered nanoporous materials into novel energy-efficient spintronic applications. Magnetic storage and magneto-electronic devices are conventionally controlled by means of magnetic fields (via electromagnetic induction) or using spin-polarized electric currents (spin-transfer torque). Both principles involve significant energy loss by heat dissipation (Joule effect). The replacement of electric current with electric field would drastically reduce the overall power consumption. Strain-mediated magneto-electric coupling in piezoelectric-magnetostrictive bilayers might appear a proper strategy to achieve this goal. However, this approach is not suitable in spintronics because of the clamping effects with the substrate, need of epitaxial interfaces and risk of fatigue-induced mechanical failure. The exciting possibility to control ferromagnetism of metals and semiconductors directly with electric field (without strain) has been recently reported, but most significant effects occur below 300 K and only in ultra-thin films or nanoparticles. This Project tackles the development of a new type of nanocomposite material, comprising an electrically conducting or semiconducting nanoporous layer filled with a suitable dielectric material, where the magnetic properties of the metal/semiconductor will be largely tuned at room temperature (RT) by simply applying a voltage, via electric charge accumulation. The porous layer will consist of specific alloys (Cu-Ni or Fe-Rh) or oxide diluted magnetic semiconductors, where surface magnetic properties have been recently reported to be sensitive to electric field at RT. Based on these new materials, three technological applications are envisaged: electrically-assisted magnetic recording, voltage-driven switching of magnetic random-access memories and spin field-effect transistors. The obtained results are likely to open new paradigms in the field of spintronics and could be of high economic transcendence.
Wissenschaftliches Gebiet
Not validated
Not validated
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringelectric energy
- natural sciencesphysical scienceselectromagnetism and electronicsspintronics
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- engineering and technologynanotechnologynano-materials
- engineering and technologymaterials engineeringnanocomposites
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-COG - Consolidator GrantGastgebende Einrichtung
08193 Cerdanyola Del Valles
Spanien