Projektbeschreibung
Auf dem Weg zu saubereren Energieanwendungen
Metallorganische Gerüstverbindungen sind kristalline Materialien mit hoher Porosität, die Anordnungen aus positiv geladenen Metallionen enthalten. Aufgrund ihrer Eigenschaften eignen sie sich für Katalysezwecke zur Erzeugung sauberer Energie. Das Ziel des vom Europäischen Forschungsrat finanzierten Projekts Supramol lautet, die Katalyseleistung metallorganischer Gerüstverbindungen durch Veränderungen von Größe, Form und Ladung zu verbessern. Die Forschenden werden außerdem funktionelle Gruppen und Photosensibilisatoren einbauen, um die Absorption von Licht zu ermöglichen, wodurch Elektronenübertragungen ausgelöst und die katalytischen Zentren aktiviert werden. Endziel ist die effiziente Umwandlung von Licht in chemische Energie, was einen bedeutenden wissenschaftlichen Durchbruch mit weitreichenden Auswirkungen für zukünftige Generationen darstellen würde.
Ziel
Metal-organic frameworks (MOFs) are key compounds related to energy storage and conversion, as their unprecedented surface areas make them promising materials for gas storage and catalysis purposes. We believe that their modular construction principles allow the replication of key features of natural enzymes thus demonstrating how cavity size, shape, charge and functional group availability influence the performances in catalytic reactions. This proposal addresses the question of how such novel, bio-inspired metallo-supramolecular systems can be prepared and exploited for sustainable energy applications. A scientific breakthrough that demonstrates the efficient conversion of light into chemical energy would be one of the greatest scientific achievements with unprecedented impact to future generations. We focus on the following key aspects:
a) MOFs containing novel, catalytically active complexes with labile coordination sites will be synthesised using rigid organic ligands that allow us to control the topologies, cavity sizes and surface areas. We will incorporate photosensitizers to develop robust porous MOFs in which light-absorption initiates electron-transfer events that lead to the activation of a catalytic centre. In addition, photoactive molecules will serve as addressable ligands whereby reversible, photo-induced structural transformations impose changes to porosity and chemical attributes at the active sites.
b) Catalytic studies will focus on important oxidations of alkenes and alcohols. These reactions are relevant to H2-based energy concepts as the anodic liberation of protons and electrons can be coupled to their cathodic recombination to produce H2. The studies will provide proof-of-concept for the development of photocatalytic systems for the highly endergonic H2O oxidation reaction that will be explored using most stable MOFs. Further, gas storage and magnetic properties that may also be influenced by light-irradiation will be analysed.
Wissenschaftliches Gebiet
- natural scienceschemical sciencesinorganic chemistryinorganic compounds
- natural scienceschemical scienceselectrochemistryelectrolysis
- natural scienceschemical sciencesorganic chemistryalcohols
- natural scienceschemical sciencescatalysis
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteinsenzymes
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-COG - Consolidator GrantGastgebende Einrichtung
D02 CX56 DUBLIN 2
Irland