Objective
The RoMaNS (Robotic Manipulation for Nuclear Sort and Segregation) project will advance the state of the art in mixed autonomy for tele-manipulation, to solve a challenging and safety-critical “sort and segregate” industrial problem, driven by urgent market and societal needs.
Cleaning up the past half century of nuclear waste, in the UK alone (mostly at the Sellafield site), represents the largest environmental remediation project in the whole of Europe. Most EU countries face related challenges. Nuclear waste must be “sorted and segregated”, so that low-level waste is placed in low-level storage containers, rather than occupying extremely expensive and resource intensive high-level storage containers and facilities. Many older nuclear sites (>60 years in UK) contain large numbers of legacy storage containers, some of which have contents of mixed contamination levels, and sometimes unknown contents.
Several million of these legacy waste containers must now be cut open, investigated, and their contents sorted. This can only be done remotely using robots, because of the high levels of radioactive material. Current state-of-the-art practice in the industry, consists of simple tele-operation (e.g. by joystick or teach-pendant). Such an approach is not viable in the long-term, because it is prohibitively slow for processing the vast quantity of material required.
The project will:
1) Develop novel hardware and software solutions for advanced bi-lateral master-slave tele-operation.
2) Develop advanced autonomy methods for highly adaptive automatic grasping and manipulation actions.
3) Combine autonomy and tele-operation methods using state-of-the-art understanding of mixed initiative planning, variable autonomy and shared control approaches.
4) Deliver a TRL 6 demonstration in an industrial plant-representative environment at the UK National Nuclear Lab Workington test facility.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologyother engineering and technologiesnuclear engineeringnuclear waste management
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcontrol systems
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringroboticsautonomous robots
- engineering and technologymechanical engineering
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
Programme(s)
Topic(s)
Funding Scheme
RIA - Research and Innovation actionCoordinator
B15 2TT Birmingham
United Kingdom