Objective
The diagnosis and management of acute Sepsis is a critical area where fast and accurate results can translate into life changing health outcomes for individuals. The overall aim of RAIS is to develop a new point-of-care label-free microarray platform and validate it for quantifying levels of specific Sepsis’ biomarkers. The approach uses a novel interferometric technique ultimately capable of providing very large arrays of tests. Specific objectives and activities include: (i) an optical microarray reader based on a disruptive proprietary design combining interferometric lens-free microscopy and proximity CCD or CMOS image sensing; (ii) a microarray plate, in a proper microfluidic cartridge, consisting of a transparent slide with a novel nano-structured surface geometry to increase the detection sensitivity and covered by specific receptors to capture bio-markers; (iii) their integration in a portable and battery powered label free microarray platform potentially capable of measuring more than 1 million bio-targets simultaneously. The developed technology will be capable to detect micro-ribonucleic acids (microRNAs), interleukins and other specific proteins associated to Sepsis using a few microliters of blood or serum samples, in a concentration of a few pg/ml, within 30 minutes (sample to result) and at a cost per patient of less than 50€. In this way, patients will be put on the right treatment more rapidly, potentially reducing the Sepsis mortality rate of more than 70%, with estimated cost savings of more than €10 billion per year as a consequence of shorter hospital stays, reduced use of unnecessary drugs and lower associated insurance bills. The technical approach, targeted device, application and the addressed market sector are perfectly in line with the call H2020-ICT-2014-1 - Photonics KET - Biophotonics for screening of diseases: Mobile, low-cost point-of-care screening devices for reliable, fast and non- or minimally-invasive detection of diseases.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Programme(s)
- H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT) Main Programme
- H2020-EU.2.1.1.6. - Micro- and nanoelectronics and photonics: Key enabling technologies related to micro- and nanoelectronics and to photonics, covering also quantum technologies
Topic(s)
Funding Scheme
RIA - Research and Innovation actionCoordinator
08860 Castelldefels
Spain