Obiettivo
The making of policies coping with Global Systems is a process that necessarily involves stakeholders from diverse disciplines, each with their own interests, constraints and objectives. People play a central role in such collective decision making and the quest for solutions to a problem generally intertwines its very specification.
Simulators can assist in this process provided they employ adequate high-level modelling to separate the political question from the underlying scientific details. Domain-specific Languages (DSL) embedded in Functional Programming (FP) languages offer a promising way to implement scalable and verifiable simulators. But the use of simulators is essentially a trial-and-error process too tedious for execution in a group session. A paradigm shift is needed towards active problem solving where stakeholders’ objectives can be taken along from the very beginning. Constraint Programming (CP) has demonstrated to enable such a shift for e.g. managed physical systems like water and power networks.
This project lays the base for a DSL aimed at building scalable Rapid Assessment Tools for collective policy making in global systems. This can be achieved through foundational scientific work at different levels: from the high-level, political modelling, adapting the social discipline of Group Model Building (as used in business organizations), through visual forms of CP as well as gamification aspects, down to the needs for a host language, combining CP and FP. Special emphasis is put on domain-specific constraints, constraint composition, and composable solvers and heuristics.
Results are applied and validated for the problem case of Climate-Resilient Urban Design, but the ambition is a general framework applicable to many other systems. The case study is assessed by an external multi-disciplinary Advisory Board of Stakeholders that guides the specification process and evaluates needs and usability of the tools.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
RIA - Research and Innovation actionCoordinatore
08034 Barcelona
Spagna