Description du projet
Faire la lumière sur de nouveaux horizons quantiques
Les chercheurs ouvrent la voie à des applications transformatives dans le domaine des technologies quantiques. Le projet FoQAL, financé par le CER, entend révolutionner notre capacité à manipuler les interactions entre la lumière et la matière au niveau quantique. En mettant à profit les atomes froids et les systèmes nanophotoniques, il prévoit d’exploiter des caractéristiques uniques telles que le contrôle dimensionnel, la dispersion de la lumière ainsi que les forces du vide quantique. Les principales avancées portent sur des nanopièges utilisant les forces du vide quantique, qui permettent des profondeurs de piège et un confinement spatial dépassant les techniques conventionnelles de un à deux ordres de grandeur. Le projet FoQAL fera également la démonstration de fortes interactions spin-photon-phonon, produisant ainsi de nouvelles interactions à longue portée ainsi que des états quantiques exotiques de la lumière et de la matière. Le projet élaborera, en outre, de nouvelles approches destinées aux applications liées à l’optique non linéaire à photons uniques, en exploitant les interactions à longue portée entre les atomes. Globalement, les importantes avancées permises par le projet propulseront les technologies quantiques vers de nouveaux horizons.
Objectif
FoQAL aims to completely re-define our ability to control light-matter interactions at the quantum level. This potential revolution will make use of cold atoms interfaced with nanophotonic systems, exploiting unique features such as control over the dimensionality and dispersion of light, the engineering of quantum vacuum forces, and strong optical fields and forces associated with light confined to the nanoscale. We will develop powerful and fundamentally new paradigms for atomic trapping, tailoring atomic interactions, and quantum nonlinear optics, which cannot be duplicated in macroscopic systems even in principle. Targeted breakthroughs include:
1) Nanoscale traps using quantum vacuum forces. Nanophotonic structures enable strong quantum vacuum forces acting on atoms near dielectric surfaces to be harnessed for novel “vacuum traps.” Their figures of merit (e.g. trap depth and spatial confinement) will exceed what is possible with conventional trapping techniques by 1-2 orders of magnitude.
2) Strong long-range spin-photon-phonon interactions. We will show that nanophotonic systems enable the formation of new “quasi-particles” consisting of atoms dressed by localized photonic clouds. These clouds produce strong multi-physics coupling between photons and atomic spins and motion, facilitating novel long-range interactions and the generation of exotic quantum states of light and matter.
3) New routes to single-photon nonlinear optics. We will develop novel techniques to attain strong interactions between individual photons, which are not based upon the saturation of atomic transitions. These approaches will take advantage of engineered long-range interactions between atoms, and “atom-optomechanics” in which the optical response of atoms and their motion strongly couple. Significantly, our protocols will enable a growth in nonlinearities for moderate atom number N, in contrast to conventional cavity QED where the optimal operating point is N=1.
Champ scientifique
- natural sciencesphysical sciencesatomic physics
- natural sciencesphysical sciencesquantum physicsquantum optics
- natural sciencescomputer and information sciencescomputational sciencemultiphysics
- natural sciencesphysical sciencesopticsnonlinear optics
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Programme(s)
Thème(s)
Régime de financement
ERC-STG - Starting GrantInstitution d’accueil
08860 Castelldefels
Espagne