Descripción del proyecto
El poder de la luz para los combustibles químicos renovables
La necesidad de fuentes de energía limpia nuevas y eficientes es cada vez más urgente. Una de esas fuentes de inspiración es la forma en que las plantas obtienen energía directamente del sol. Esto ha motivado nuestro estudio de la ingeniería ecológica inspirada en la naturaleza. El equipo del proyecto COFLeaF, financiado con fondos europeos, desarrollará un sistema fotocatalítico y heterogéneo, de un solo emplazamiento capaz de generar de forma fiable combustibles solares a partir de agua y CO2. En concreto, integrará varios subsistemas necesarios para el proceso fotocatalítico global en una plataforma polimérica denominada «hoja COF». Esto permite adaptar cada uno de los pasos que intervienen en la conversión de la energía solar en combustibles químicos renovables. En última instancia, facilitará la conversión de la energía solar mediante el desarrollo de catalizadores funcionales para la división del agua y la reducción del CO2, avanzando así hacia la producción de combustibles químicos renovables.
Objetivo
The efficient conversion of solar energy into renewable chemical fuels has been identified as one of the grand challenges facing society today and one of the major driving forces of materials innovation.
Nature’s photosynthesis producing chemical fuels through the revaluation of sunlight has inspired generations of chemists to develop platforms mimicking the natural photosynthetic process, albeit at lower levels of complexity. While artificial photosynthesis remains a considerable challenge due to the intricate interplay between materials design, photochemistry and catalysis, the spotlights – light-driven water splitting into hydrogen and oxygen and carbon dioxide reduction into methane or methanol – have emerged as viable pathways into both a clean and sustainable energy future. With this proposal, we aim at introducing a new class of polymeric photocatalysts based on covalent organic frameworks, COFs, to bridge the gap between semiconductor and molecular systems and explore rational ways to design single-site heterogeneous photocatalysts offering both chemical tunability and stability.
The development of a photocatalytic model system is proposed, which will be tailored by molecular synthetic protocols and optimized by solid-state chemical procedures and crystal engineering so as to provide insights into the architectures, reactive intermediates and mechanistic steps involved in the photocatalytic process, with complementary insights from theory. We envision the integration of various molecular subsystems including photosensitizers, redox shuttles and molecular co-catalysts in a single semiconducting COF backbone. Taking advantage of the hallmarks of COFs – molecular definition and tunability, crystallinity, porosity and rigidity – we describe the design of COF systems capable of light-induced hydrogen evolution, oxygen evolution and overall water splitting, and delineate strategies to use COFs as integrated platforms for CO2 capture, activation and conversion.
Ámbito científico
- natural scienceschemical sciencesinorganic chemistrynoble gases
- natural scienceschemical sciencescatalysisphotocatalysis
- natural sciencesphysical sciencesopticsmicroscopyelectron microscopy
- natural sciencesmathematicspure mathematicsgeometry
- natural sciencesmathematicsapplied mathematicsmathematical model
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
80539 Munchen
Alemania