Objectif
New models of fluid transport are expected to emerge from the confinement of liquids at the nanoscale, where the behaviour of matter strongly departs from common expectations.
This is the field of the Nanofluidics : taking inspiration from the solution found by evolved biological systems, new functionalities will emerge from the nanometre scale, with potential applications in ultrafiltration, desalination and energy conversion.
Nevertheless, advancing our fundamental understanding of fluid transport on the smallest scales requires mass and ion dynamics to be ultimately characterized across channels with dimensions close to the molecular size. A major challenge for nanofluidics thus lies in building distinct and well-controlled nanochannels, amenable to the systematic exploration of their properties.
This project will tackle several complementary challenges. On the first hand the realization of new kind of fluidic devices allowing the study of fluid and ion transport at the nanoscale: these new experimental devices will be obtained by using nanostructures like building blocks as already shown by realising a fluidics set-up based on transmembrane nanotubes; in parallel a dedicated plateform for the characterization of fluid transport will be developed based on electrokinetics and optical detection set-ups. On the other hand, profiting of such experimental set-ups, I will look for the limit of the classical description of the fluid dynamics, focusing on new functionalities emerging from exotic behaviour of fluids at the nanometer level. This will be done by studying different kind of nanofluidics set-up such as carbon and boron-nitride nanotube, ultrathin pierced graphene and h-BN sheet and composite materials.
I aim the creation of a link between fundamental research on soft matter and nanoscience-condensed matter with a an attention on the energy production domain, assuring a fruitful transfer between the fundamental findings and new industrial applications.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- natural sciencesphysical sciencesclassical mechanicsfluid mechanicsfluid dynamics
- natural sciencesphysical sciencesopticsmicroscopyelectron microscopy
- natural sciencesmathematicspure mathematicsgeometry
- natural sciencesphysical sciencesopticsmicroscopyconfocal microscopy
- natural scienceschemical sciencesinorganic chemistrymetalloids
Programme(s)
Thème(s)
Régime de financement
ERC-STG - Starting GrantInstitution d’accueil
75794 Paris
France