Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Inhalt archiviert am 2024-06-18

Characterization of maternal microbiota-dependent imprinting of the neonatal immune system

Ziel

Humans live in a mutual beneficial relationship with the commensal microbiota that colonize the epithelial surfaces of the body. The remarkable impact of commensal microbiota on the mucosal and systemic immune system has become apparent during the last years. It is now believed that changes in the composition of the intestinal microbiota as a consequence of “Western” lifestyle, significantly contribute to the rising incidence of autoimmune and allergic diseases. There is evidence that exposure to certain microbes during early childhood or even to the maternal microflora in utero are important factors in shaping the health of the neonate/infant.

The objective of this project is to understand the molecular mechanism into how signals originating from maternal microbiota can shape fetal and neonatal immunity. Using a model of transient colonization of pregnant mice kept under germ-free conditions, we have discovered a beneficial effect of maternal microbiota on the immune system of the offspring. Importantly, mice born from transiently colonized mothers exhibited higher numbers of innate lymphoid cell populations in the intestine compared to offspring from untreated germ-free mothers. We suggest two approaches to depict how and by which route the maternal microbiota calibrates the immune system of the offspring.

Besides increased appearance of allergic diseases in children in developed countries, neonate and child mortality from infectious diseases are still very high in developing countries. Thus, the improvement of neonatal immunity is an important goal. Our research will contribute to the development of new therapeutic tools to reduce child mortality as well as for the prenatal prevention of chronic inflammatory and allergic diseases.

Wissenschaftliches Gebiet

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.

Aufforderung zur Vorschlagseinreichung

FP7-PEOPLE-2013-IEF
Andere Projekte für diesen Aufruf anzeigen

Koordinator

UNIVERSITAET BERN
EU-Beitrag
€ 199 317,60
Adresse
HOCHSCHULSTRASSE 6
3012 Bern
Schweiz

Auf der Karte ansehen

Region
Schweiz/Suisse/Svizzera Espace Mittelland Bern / Berne
Aktivitätstyp
Higher or Secondary Education Establishments
Kontakt Verwaltung
Andrew Macpherson (Prof.)
Links
Gesamtkosten
Keine Daten