Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Inhalt archiviert am 2024-06-18

Statistical modelling and estimation for spatiotemporal data with oceanographic applications

Ziel

This fellowship is concerned with building new statistical modelling and estimation procedures that are appropriate for Big Data challenges with high-dimensional dependent data. The new methods will be applied to large oceanographic spatiotemporal datasets leading to important application benefits in global climate modelling. The methodological contribution centres on building physically-motivated stochastic processes that capture multivariate dependence structure from complex high-dimensional data sets. Estimation procedures are then developed to capture heterogeneity in spatiotemporal data, while properly accounting for practical issues such as irregularly-sampled data in space and time. Such modelling and estimation procedures provide great interpretability and meaningful summaries from the complex data sets we observe. The societal benefits include improved global climate modelling and improved responses to environmental disasters such as oil spills.

These advances will be achieved through interdisciplinary collaboration, with the fellow working closely with world-leading experts in oceanographic data in the US during the outgoing phase, and then consolidating these developments at the UCL Department of Statistical Sciences in the return phase. The fellow will therefore gain experience in developing relevant new statistical methods for a pressing Big Data challenge, and will then return to Europe where this training will significantly develop the fellow’s ability to produce cutting-edge research at the frontier of statistics and numerous applications involving complex high-dimensional data.

Wissenschaftliches Gebiet

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.

Aufforderung zur Vorschlagseinreichung

FP7-PEOPLE-2013-IOF
Andere Projekte für diesen Aufruf anzeigen

Koordinator

UNIVERSITY COLLEGE LONDON
EU-Beitrag
€ 294 219,60
Adresse
GOWER STREET
WC1E 6BT LONDON

Auf der Karte ansehen

Aktivitätstyp
Higher or Secondary Education Establishments
Kontakt Verwaltung
Giles Machell (Mr.)
Links
Gesamtkosten
Keine Daten