Objectif
Polymer-nanocrystal hybrid solar cells offer promise as a low-cost alternative to traditional solar cells due to their potential to combine the advantages of organic and inorganic materials to produce lightweight, flexible, and high-performance solar cells using low-cost solution processing. This project, which includes the first detailed synchrotron study of polymer-nanocrystal hybrid solar cells, will advance the understanding and performance of hybrid solar cells by demonstrating control of molecular packing and morphology in hybrid solar cells, correlating molecular packing and morphology with solar-cell properties and performance, and using the obtained knowledge to fabricate high-efficiency solar cells. The results will be of interest to researchers in a variety of fields and will be published in a series of high-impact journal articles and presented at materials science and chemistry conferences.
The researcher will join the Solution-Processed Nanophotonic Devices (SPNP) group led by Professor Gerasimos Konstantatos at the Institute of Photonic Sciences (ICFO) in Castelldefels, Spain to complete this project. The SPNP group, an interdisciplinary team of physicists, chemists, and engineers, will share its knowledge of the design, synthesis, and modification of nanocrystals with the researcher. The researcher has extensive experience with organic solar cells and synchrotron characterization due to her research at the Stanford Synchrotron Radiation Lightsource (SSRL) as a PhD candidate at Stanford University and a postdoctoral researcher at Robert Bosch, LLC. The researcher will use her experience to perform the host group’s first synchrotron experiments and form lasting collaborations with SSRL and ALBA, a third generation synchrotron source less than 40 km from ICFO.
Champ scientifique
Appel à propositions
FP7-PEOPLE-2013-IIF
Voir d’autres projets de cet appel
Régime de financement
MC-IIF - International Incoming Fellowships (IIF)Coordinateur
08860 Castelldefels
Espagne