Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Quantum Mechanical Nature of Black Holes

Objective

The overall objective of this proposal is to understand the quantum mechanical nature of black holes. The proposal aims to do this by finding a quantum mechanical description of black holes by employing the Holographic Principle as manifested in the AdS/ CFT correspondence between Gauge Theory and String Theory. This is a highly challenging and deep conceptual problem to understand. The researcher proposes therefore a novel approach that makes it feasible to reach this objective. The novel approach consists in exploring the AdS/CFT correspondence in the regimes near a certain kind of critical points by employing the so-called decoupling limits originally conceived by the researcher. In these near-critical regimes both the String Theory and Gauge Theory sides of the correspondence simplify considerably, and are thus amiable to a detailed understanding. Furthermore, in a subclass of these regimes one can find black holes on the String Theory side. Hence finding a way to map the Gauge Theory side to the String Theory side in the near-critical regimes would enable us to describe black holes from a quantum mechanical theory. This would be a major breakthrough that would go substantially beyond the state-of-the-art in theoretical physics.

Having a quantum mechanical description of black holes would mean that one can answer long-standing important questions about the quantum nature of black holes, such as how quantum correlations should appear in black hole radiation, how the black hole evaporation occurs, and what are the nature of the horizon and the inside of the black hole. More generally, it could be instrumental in improving our understanding of quantum gravity, and thus our understanding of important issues such as the Big Bang singularity in the beginning of our universe.

Fields of science

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

Call for proposal

FP7-PEOPLE-2013-CIG
See other projects for this call

Coordinator

KOBENHAVNS UNIVERSITET
EU contribution
€ 100 000,00
Address
NORREGADE 10
1165 Kobenhavn
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Bjarne Friis Ploumark (Mr.)
Links
Total cost
No data