Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Graphene-enabled on-chip supercontinuum light sources

Project description


FET Young Explorers

To pave the way towards the widespread application of on-chip mid-infrared(MIR)-pumped nonlinear supercontinuum light sources, we want to introduce a paradigm shift in integrated nonlinear optics. Rather than relying on non-standard waveguide designs, large waveguide footprints, bulky MIR pump lasers and/or limited spectral coverage in strategies that could never comply with the requirements for widespread deployment, we target a major advance based on novel material physics and device design, eliminating these issues. Our goal is to develop a near-infrared(NIR)- and MIR-emitting, ultra-compact on-chip supercontinuum light source by exploiting practically unexplored optical nonlinearities of standard silicon waveguides covered with graphene. This groundbreaking dual-band source will be realized by cascading two devices which are based on graphene-covered standard silicon waveguides, and which enable for the first time broadband self-phase modulation in the MIR and power-efficient second harmonic generation in the NIR within an ultra-compact chip footprint. To ensure that the entire supercontinuum device including the pump laser is compact, we will in addition develop a novel, small-sized, and practical modelocked MIR Tm-Ho fiber laser to pump the supercontinuum generation. These breakthroughs carry a highly novel and foundational character, and fit very well within the framework of the FET Open FP7-ICT-2013-C call. Since the partners involved in this project have both the knowledge and the equipment to model, design, fabricate and pump graphene-based nonlinear optical devices, our consortium holds all necessary skills required to successfully carry out this "high-gain/high-risk" project. In doing so, we will lay the foundations for graphene-on-silicon-based nonlinear photonic integrated circuits, and at the same time pave the way to the extensive use of on-chip supercontinuum light sources in real-life applications.

Call for proposal

FP7-ICT-2013-C
See other projects for this call

Coordinator

VRIJE UNIVERSITEIT BRUSSEL
EU contribution
€ 517 232,00
Address
PLEINLAAN 2
1050 Bruxelles / Brussel
Belgium

See on map

Region
Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest Région de Bruxelles-Capitale/ Brussels Hoofdstedelijk Gewest Arr. de Bruxelles-Capitale/Arr. Brussel-Hoofdstad
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Nathalie Vermeulen (Prof.)
Links
Total cost
No data

Participants (3)