Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Insulator Spintronics

Project description


FET-Open Xtrack

InSpin will develop revolutionary nano-scale insulator spintronics that can replace or be integrated with conventional electronics and function at ambient temperatures. The innovation lies in the use of spin currents that in magnetic insulators are decoupled from charge currents and propagate with extremely low power dissipation. InSpin's objectives are to provide a disruptive technology that is spin-based, low-power and ultra-low-noise, leading to superior oscillators, logics, and random access memory compared to those based on charge-based electronics. Ultimately, electrical current-driven magnon Bose-Einstein condensation and the associated super spin-currents enable dissipationless spintronics at room temperature. The strong reduction or even the complete absence of power dissipation in (super) insulator spintronics implies loss-less transfer of spin signals that circumvents the energy dissipation problem, which threatens to end Moore's Law in information and communication technology. InSpin's final deliverable is to fabricate the first functional spin wave bus with signal input and detection and to use this bus to realize a logic majority gate as the key component for future insulator spintronics.

Fields of science

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

Call for proposal

FP7-ICT-2013-X
See other projects for this call

Coordinator

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
EU contribution
€ 551 015,00
Address
HOGSKOLERINGEN 1
7491 Trondheim
Norway

See on map

Region
Norge Trøndelag Trøndelag
Activity type
Higher or Secondary Education Establishments
Administrative Contact
de Graaf Stefan (Dr.)
Links
Total cost
No data

Participants (4)