Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenu archivé le 2024-06-18

Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy

Objectif

"X-ray crystallography yields atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes constituting the macromolecular machinery of life. Life is not static, and many of the most important reactions in chemistry and biology are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by ultrafast laser spectroscopy, but they reduce the vast complexity of the process to a few reaction coordinates. Here we develop attosecond serial crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology. We apply a fully coherent attosecond X-ray source based on coherent inverse Compton scattering off a free-electron crystal, developed in this project, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals [A. Cho, ""Breakthrough of the year"", Science 388, 1530 (2012)]. Our synergistic project will optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. The multidisciplinary team optimizes X-ray pulse parameters, in tandem with sample delivery, crystal size, and advanced X-ray detectors. We will apply our new capabilities to one of the most important problems in structural biology, which is to elucidate the dynamics of light reactions, electron transfer and protein structure in photosynthesis. Also, the attosecond source can provide a coherent seed and will help to overcome peak flux limitations of X-ray FELs by introducing chirped pulse amplification to FEL technology."

Appel à propositions

ERC-2013-SyG
Voir d’autres projets de cet appel

Régime de financement

ERC-SyG - Synergy grant

Chercheur en chef

Franz Xaver Kaertner Prof.

Institution d’accueil

DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
Contribution de l’UE
€ 10 774 200,00
Adresse
NOTKESTRASSE 85
22607 Hamburg
Allemagne

Voir sur la carte

Région
Hamburg Hamburg Hamburg
Type d’activité
Research Organisations
Contact administratif
Ute Krell (Dr.)
Chercheur principal
Franz Xaver Kaertner (Prof.)
Liens
Coût total
Aucune donnée

Bénéficiaires (2)