Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

High-power Impulse Plasma Process Operations for the Creation of Advanced Metallic Parts

Objective

European industries such as automotive, aerospace and manufacturing have to develop new structural materials and production processes in order to achieve strict emission reduction requirements and improve performance and multifunctionality. However, advanced engineered materials manufactured today with traditional techniques are prohibitively expensive for many applications and generate unwanted by-products and toxic waste. The HIPPOCAMP project focuses on the development of a robust, high-yield, low cost, environmentally friendly manufacturing process to produce nano-composites for products made of engineered metallic material, in particular, structural components for automotive, aerospace, manufacturing and wind turbine applications.
One of the most desired functional property of such components is vibration damping, because vibration and chatter in turbine blades, machine-tools and other industrial components have very significant consequences: decreased performance, higher maintenance costs, shorter service life and ultimately, higher costs. The HIPPOCAMP project develops a novel method to generate a unique carbon-based composite with high dynamic stiffness material, whose effect on vibration damping will prolong the service life of components, reduce their weight and significantly improve the performance of industrial machineries.
Today, there are no standard structural materials that can simultaneously combine high static stiffness with high damping properties at a broad operating temperature and frequency range. Consequently, there are currently no industrially scalable processes for cost-effectively manufacturing high damping components. The HIPPOCAMP project addresses the development of a scalable industrial process enabling, (i) the synthesis of a new class of nano-composite materials, (ii) the production of these nano-composites on metal or polymer parts, to create industrial components with superior vibration damping property.

Call for proposal

FP7-2013-NMP-ICT-FOF(RTD)
See other projects for this call

Coordinator

OULUN YLIOPISTO
EU contribution
€ 698 700,00
Address
PENTTI KAITERAN KATU 1
90014 Oulu
Finland

See on map

Region
Manner-Suomi Länsi-Suomi Pohjanmaa
Activity type
Higher or Secondary Education Establishments
Links
Total cost
No data

Participants (9)