Objectif
Anthropogenic driven climate change is a global problem that will increasingly affect our world and It is essential that we train our future scientists in multidisciplinary approaches to enable them to tackle such complex problems. This ITN examines environmental calcium mobilisation and deposition in marine molluscs, species that have been highlighted as being particularly at risk under future climate change scenarios due to the acidification and warming of the World’s oceans. However, surprisingly little is known about how these animals regulate calcium to produce a shell, how these processes might be affected when the environmental conditions change and what the consequences are at the population level. This lack of knowledge significantly impacts on our abilities to accurately predict future biodiversity and the consequences for the commercial aquaculture industry. We aim to remedy this knowledge deficit with this ITN. We will take an in-depth comparative approach, using four of the EU’s most important commercially exploited molluscan species as model organisms and examine natural variation in shell production in combination with experimental manipulations to quantify adaptive potential and identify novel genes/proteins that underpin responses to environmental change. By embedding our projects in natural population surveys, we will gain an unprecedented understanding of the level of phenotypic plasticity that operates in bivalve shell production: an essential prerequisite for understanding their resilience to environmental perturbation. The resulting data will also be integrated into models aimed at predicting future aquaculture scenarios and will lead into efforts at biomimic exploitation for sustainable building materials, providing a genuinely innovative inter-sectoral approach, which will directly contribute to the EU Blue Economy and EU aspirations for sustainable opportunities via “Blue Growth”.
Champ scientifique
- natural scienceschemical sciencesinorganic chemistryalkaline earth metals
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- natural sciencesbiological sciencesecologyecosystems
- natural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changes
- engineering and technologycivil engineeringarchitecture engineeringsustainable architecturesustainable building
Appel à propositions
FP7-PEOPLE-2013-ITN
Voir d’autres projets de cet appel
Régime de financement
MC-ITN - Networks for Initial Training (ITN)Coordinateur
SN2 1FL Swindon
Royaume-Uni