Objectif
Accurate design and modeling of nano-enabled systems requires a multi-scale simulation approach that can link phenomena on the nano-, micro-, meso-, and macroscales. Numerous simulation methods and tools are available for describing a material accurately and efficiently on each of the scales separately. In addition, several approaches for linking and coupling various hierarchal scales are also available. However, an integrated multi-scale simulation framework that allows a seamless and efficient coupling of various scales and methods is still lacking. The main goal of the present consortium is to develop an integrated multi-scale modeling environment for nano-materials and system design. The tools will be formed mainly by augmenting existing open-source and commercial simulation tools and supplementing them with sophisticated interface libraries that allow flow of information from one component to the other and from one scale to another. The simulation environment will also act as a platform for harmonizing and accelerating the development of new simulation modules by providing interface libraries to powerful pre- and postprocessing tools and to computational modules, which can be integrated and readily reused in new applications. The efficiency of the new developed simulation environment specifically for shortening the development process and time to discover novel nano-enabled products will be demonstrated through a proof-of-concept design of novel simulation tools for micro- and nanofluidic devices.
Champ scientifique
Programme(s)
Appel à propositions
FP7-NMP-2013-SMALL-7
Voir d’autres projets de cet appel
Régime de financement
CP-FP - Small or medium-scale focused research projectCoordinateur
80686 Munchen
Allemagne