Objectif
Polluted groundwater in urban and industrial areas often represents a continuous source of (diffuse) contamination of surface waters. However, the fate of infiltrating groundwater pollutants might be influenced by the sediment in eutrophic water bodies. Such sediments form an interface between groundwater and surface water and possesses characteristic biological and physico-chemical degradation properties. Knowledge on natural attenuation of passing pollutants and the potential to stimulate and sustain occurring degradation processes are however scarce or non-existent. This is especially due to the lack of appropriate monitoring devices and tools to measure in situ mass balances of pollutants and reactants. In the SEDBARCAH project, we want to investigate the boundaries of the sediment zone as a barrier against the infiltration of chlorinated aliphatic hydrocarbons (CAH) into surface water and how we can turn this zone into a sustainable and efficient (stimulated) biobarrier technology for protection of surface waters from groundwater contamination. We will (i) determine the role of the microbial community present in sediments in the biodegradation of groundwater pollutants infiltrating a river bed; (ii) explore the boundary conditions and the possibility to increase and sustain removal activities in the sediment zone and (iii) select tools to follow such removal activities in situ. Therefore, a thorough investigation both in the field and in the laboratory of the physico-chemical and microbial processes occurring in these sediments will be performed and coupled to the CAH-degradation potential present in the sediment interface of two selected contaminated areas. In addition, methodologies to increase this degradation will be examined. The final goal of SEDBARCAH is to investigate the potentials of these (stimulated) sediment biobarriers as a groundwater remediation technology and a surface water pollution and risk prevention technology.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
Appel à propositions
FP6-2003-GLOBAL-2
Voir d’autres projets de cet appel
Régime de financement
STREP - Specific Targeted Research ProjectCoordinateur
MOL
Belgique