Objective
The aim of the proposed Integrated Project is to solve the persisting generic problems with planar Solid Oxide Fuel Cells (SOFC) in a concerted action of the European fuel cell industry and research institutions. Main topics addressed include decreased ageing, cost effective materials, low cost components and manufacturing processes, highest electricity generation efficiency in pressurised operation and waste heat utilisation. In close co-operation between industry and research institutions the following steps are accomplished: *improved understanding of ageing in planar SOFC stacks considering all modes of operation, including pressurised, long-term testing over 10.000 hrs., thermal cycling up to 100 cycles, and the influences of fuel composition; these results will flow into *adaptation of materials and protective coatings in order to reduce ageing to well below 0,5%/1000 hrs., introduction of requirements from pressurised operation to materials and cell development; the modified materials then are used in *manufacturing of improved components under commercial conditions and subsequent characterisation in long- term and cycling tests. Two proofs-of-concept including laboratory equipment tests will address * the pressurised operation of stacks coupled with gas turbines (including pressurised stack development in the 5 and 50 kW range) and *the utilisation of the high-value waste heat for industrial processes , namely sorption cooling. The project addresses the topics of Life Cycle Analysis as an essential tool for assessing the environmental impact and recycling of the materials used, industrial standardisation as a means of lowering costs, and training and dissemination as a tool of human resource management and gender equality. The structure of the project is similar to the U.S. American SECA programme targeted at decisive cost reductions in SOFC systems.
Fields of science
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringpower engineeringelectric power generation
- engineering and technologymaterials engineeringcoating and films
- engineering and technologyenvironmental engineeringenergy and fuelsfuel cells
Topic(s)
Call for proposal
FP6-2002-ENERGY-1
See other projects for this call
Funding Scheme
IP - Integrated ProjectCoordinator
JUELICH
Germany