Ziel
Billions of tonnes of chlorophylls are synthesised every year, then incorporated into the photosynthetic complexes that harvest and trap the solar energy that powers the biosphere. An understanding of the mechanisms that deliver chlorophylls to the growing photosynthetic apparatus is important for fundamental reasons, and also for future exploitation of photosynthesis as an energy source.
The SYNTHPHOTO project comprises two interlinked sections: the first (SP1) will provide a step change in our knowledge of photosystem assembly by showing how newly-synthesised pigments emerging from the (bacterio)chlorophyll synthases encounter the membrane-embedded assembly machinery and form the growing photosynthetic unit. Innovations in atomic force microscopy will provide the first nanoscale mapping information on the membrane location of the assembly machinery, and state-of-the-art mass spectrometry will quantify every component in the assembly pathway.
SP2 will harness this knowledge for the design and construction of new biological and bioinspired light-gathering and energy-trapping systems. The synthetic biology approach of SP2 will splice genes for pigment and assembly pathways from a variety of bacteria, reconfiguring the photosynthetic apparatus for enhanced spectral coverage. SP2 will explore the potential for ‘bottom-up’ redesign and in vivo production of tailored arrays of photosynthetic complexes and enzymes. Building hybrid photosystems in SP2 augments the aims of SP1 by testing the adaptability of the native biosynthetic machinery, providing a new level of understanding of pigment biosynthesis and photosystem assembly pathways.
The overall aim of SYNTHPHOTO is to discover the mechanisms of assembly of the bacterial photosynthetic apparatus, and to harness this understanding for the design, development and implementation of new biological and bioinspired light-gathering and energy trapping systems.
Wissenschaftliches Gebiet
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
- natural sciencesbiological sciencessynthetic biology
- natural sciencesphysical sciencesopticsmicroscopy
- natural sciencesearth and related environmental sciencesatmospheric sciencesmeteorologybiosphera
- natural scienceschemical sciencesanalytical chemistrymass spectrometry
- natural sciencesbiological sciencesbotany
Aufforderung zur Vorschlagseinreichung
ERC-2013-ADG
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
ERC-AG - ERC Advanced GrantGastgebende Einrichtung
S10 2TN Sheffield
Vereinigtes Königreich